-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
trainer.py
329 lines (278 loc) · 10.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import datetime
import os
import time
from loguru import logger
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from yolox.data import DataPrefetcher
from yolox.utils import (
MeterBuffer,
ModelEMA,
all_reduce_norm,
get_local_rank,
get_model_info,
get_rank,
get_world_size,
gpu_mem_usage,
is_parallel,
load_ckpt,
occupy_mem,
save_checkpoint,
setup_logger,
synchronize
)
class Trainer:
def __init__(self, exp, args):
# init function only defines some basic attr, other attrs like model, optimizer are built in
# before_train methods.
self.exp = exp
self.args = args
# training related attr
self.max_epoch = exp.max_epoch
self.amp_training = args.fp16
self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
self.is_distributed = get_world_size() > 1
self.rank = get_rank()
self.local_rank = get_local_rank()
self.device = "cuda:{}".format(self.local_rank)
self.use_model_ema = exp.ema
# data/dataloader related attr
self.data_type = torch.float16 if args.fp16 else torch.float32
self.input_size = exp.input_size
self.best_ap = 0
# metric record
self.meter = MeterBuffer(window_size=exp.print_interval)
self.file_name = os.path.join(exp.output_dir, args.experiment_name)
if self.rank == 0:
os.makedirs(self.file_name, exist_ok=True)
setup_logger(
self.file_name,
distributed_rank=self.rank,
filename="train_log.txt",
mode="a",
)
def train(self):
self.before_train()
try:
self.train_in_epoch()
except Exception:
raise
finally:
self.after_train()
def train_in_epoch(self):
for self.epoch in range(self.start_epoch, self.max_epoch):
self.before_epoch()
self.train_in_iter()
self.after_epoch()
def train_in_iter(self):
for self.iter in range(self.max_iter):
self.before_iter()
self.train_one_iter()
self.after_iter()
def train_one_iter(self):
iter_start_time = time.time()
inps, targets = self.prefetcher.next()
inps = inps.to(self.data_type)
targets = targets.to(self.data_type)
targets.requires_grad = False
inps, targets = self.exp.preprocess(inps, targets, self.input_size)
data_end_time = time.time()
with torch.cuda.amp.autocast(enabled=self.amp_training):
outputs = self.model(inps, targets)
loss = outputs["total_loss"]
self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.use_model_ema:
self.ema_model.update(self.model)
lr = self.lr_scheduler.update_lr(self.progress_in_iter + 1)
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
iter_end_time = time.time()
self.meter.update(
iter_time=iter_end_time - iter_start_time,
data_time=data_end_time - iter_start_time,
lr=lr,
**outputs,
)
def before_train(self):
logger.info("args: {}".format(self.args))
logger.info("exp value:\n{}".format(self.exp))
# model related init
torch.cuda.set_device(self.local_rank)
model = self.exp.get_model()
logger.info(
"Model Summary: {}".format(get_model_info(model, self.exp.test_size))
)
model.to(self.device)
# solver related init
self.optimizer = self.exp.get_optimizer(self.args.batch_size)
# value of epoch will be set in `resume_train`
model = self.resume_train(model)
# data related init
self.no_aug = self.start_epoch >= self.max_epoch - self.exp.no_aug_epochs
self.train_loader = self.exp.get_data_loader(
batch_size=self.args.batch_size,
is_distributed=self.is_distributed,
no_aug=self.no_aug,
cache_img=self.args.cache,
)
logger.info("init prefetcher, this might take one minute or less...")
self.prefetcher = DataPrefetcher(self.train_loader)
# max_iter means iters per epoch
self.max_iter = len(self.train_loader)
self.lr_scheduler = self.exp.get_lr_scheduler(
self.exp.basic_lr_per_img * self.args.batch_size, self.max_iter
)
if self.args.occupy:
occupy_mem(self.local_rank)
if self.is_distributed:
model = DDP(model, device_ids=[self.local_rank], broadcast_buffers=False)
if self.use_model_ema:
self.ema_model = ModelEMA(model, 0.9998)
self.ema_model.updates = self.max_iter * self.start_epoch
self.model = model
self.model.train()
self.evaluator = self.exp.get_evaluator(
batch_size=self.args.batch_size, is_distributed=self.is_distributed
)
# Tensorboard logger
if self.rank == 0:
self.tblogger = SummaryWriter(self.file_name)
logger.info("Training start...")
logger.info("\n{}".format(model))
def after_train(self):
logger.info(
"Training of experiment is done and the best AP is {:.2f}".format(self.best_ap * 100)
)
def before_epoch(self):
logger.info("---> start train epoch{}".format(self.epoch + 1))
if self.epoch + 1 == self.max_epoch - self.exp.no_aug_epochs or self.no_aug:
logger.info("--->No mosaic aug now!")
self.train_loader.close_mosaic()
logger.info("--->Add additional L1 loss now!")
if self.is_distributed:
self.model.module.head.use_l1 = True
else:
self.model.head.use_l1 = True
self.exp.eval_interval = 1
if not self.no_aug:
self.save_ckpt(ckpt_name="last_mosaic_epoch")
def after_epoch(self):
self.save_ckpt(ckpt_name="latest")
if (self.epoch + 1) % self.exp.eval_interval == 0:
all_reduce_norm(self.model)
self.evaluate_and_save_model()
def before_iter(self):
pass
def after_iter(self):
"""
`after_iter` contains two parts of logic:
* log information
* reset setting of resize
"""
# log needed information
if (self.iter + 1) % self.exp.print_interval == 0:
# TODO check ETA logic
left_iters = self.max_iter * self.max_epoch - (self.progress_in_iter + 1)
eta_seconds = self.meter["iter_time"].global_avg * left_iters
eta_str = "ETA: {}".format(datetime.timedelta(seconds=int(eta_seconds)))
progress_str = "epoch: {}/{}, iter: {}/{}".format(
self.epoch + 1, self.max_epoch, self.iter + 1, self.max_iter
)
loss_meter = self.meter.get_filtered_meter("loss")
loss_str = ", ".join(
["{}: {:.1f}".format(k, v.latest) for k, v in loss_meter.items()]
)
time_meter = self.meter.get_filtered_meter("time")
time_str = ", ".join(
["{}: {:.3f}s".format(k, v.avg) for k, v in time_meter.items()]
)
logger.info(
"{}, mem: {:.0f}Mb, {}, {}, lr: {:.3e}".format(
progress_str,
gpu_mem_usage(),
time_str,
loss_str,
self.meter["lr"].latest,
)
+ (", size: {:d}, {}".format(self.input_size[0], eta_str))
)
self.meter.clear_meters()
# random resizing
if (self.progress_in_iter + 1) % 10 == 0:
self.input_size = self.exp.random_resize(
self.train_loader, self.epoch, self.rank, self.is_distributed
)
@property
def progress_in_iter(self):
return self.epoch * self.max_iter + self.iter
def resume_train(self, model):
if self.args.resume:
logger.info("resume training")
if self.args.ckpt is None:
ckpt_file = os.path.join(self.file_name, "latest" + "_ckpt.pth")
else:
ckpt_file = self.args.ckpt
ckpt = torch.load(ckpt_file, map_location=self.device)
# resume the model/optimizer state dict
model.load_state_dict(ckpt["model"])
self.optimizer.load_state_dict(ckpt["optimizer"])
# resume the training states variables
start_epoch = (
self.args.start_epoch - 1
if self.args.start_epoch is not None
else ckpt["start_epoch"]
)
self.start_epoch = start_epoch
logger.info(
"loaded checkpoint '{}' (epoch {})".format(
self.args.resume, self.start_epoch
)
) # noqa
else:
if self.args.ckpt is not None:
logger.info("loading checkpoint for fine tuning")
ckpt_file = self.args.ckpt
ckpt = torch.load(ckpt_file, map_location=self.device)["model"]
model = load_ckpt(model, ckpt)
self.start_epoch = 0
return model
def evaluate_and_save_model(self):
if self.use_model_ema:
evalmodel = self.ema_model.ema
else:
evalmodel = self.model
if is_parallel(evalmodel):
evalmodel = evalmodel.module
ap50_95, ap50, summary = self.exp.eval(
evalmodel, self.evaluator, self.is_distributed
)
self.model.train()
if self.rank == 0:
self.tblogger.add_scalar("val/COCOAP50", ap50, self.epoch + 1)
self.tblogger.add_scalar("val/COCOAP50_95", ap50_95, self.epoch + 1)
logger.info("\n" + summary)
synchronize()
self.save_ckpt("last_epoch", ap50_95 > self.best_ap)
self.best_ap = max(self.best_ap, ap50_95)
def save_ckpt(self, ckpt_name, update_best_ckpt=False):
if self.rank == 0:
save_model = self.ema_model.ema if self.use_model_ema else self.model
logger.info("Save weights to {}".format(self.file_name))
ckpt_state = {
"start_epoch": self.epoch + 1,
"model": save_model.state_dict(),
"optimizer": self.optimizer.state_dict(),
}
save_checkpoint(
ckpt_state,
update_best_ckpt,
self.file_name,
ckpt_name,
)