Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

do not reproduce the yolox-nano result #674

Closed
Tim5Tang opened this issue Sep 10, 2021 · 2 comments
Closed

do not reproduce the yolox-nano result #674

Tim5Tang opened this issue Sep 10, 2021 · 2 comments

Comments

@Tim5Tang
Copy link

use the cmd and parameter as follow:

python tools/train.py -n yolox-nano -d 2 -b 64 --fp16 -o --cache

2021-09-08 14:42:06.344 | INFO | yolox.core.trainer:before_train:126 - args: Namespace(batch_size=64, cache=True, ckpt=None, devices=1, dist_backend='nccl', dist_url=None, exp_file=None, experiment_name='nano', fp16=True, machine_rank=0, name='yolox-nano', num_machines=1, occupy=True, opts=[], resume=False, start_epoch=None)
2021-09-08 14:42:06.347 | INFO | yolox.core.trainer:before_train:127 - exp value:
╒══════════════════╤════════════════════════════╕
│ keys │ values │
╞══════════════════╪════════════════════════════╡
│ seed │ None │
├──────────────────┼────────────────────────────┤
│ output_dir │ './YOLOX_outputs' │
├──────────────────┼────────────────────────────┤
│ print_interval │ 10 │
├──────────────────┼────────────────────────────┤
│ eval_interval │ 10 │
├──────────────────┼────────────────────────────┤
│ num_classes │ 80 │
├──────────────────┼────────────────────────────┤
│ depth │ 0.33 │
├──────────────────┼────────────────────────────┤
│ width │ 0.25 │
├──────────────────┼────────────────────────────┤
│ data_num_workers │ 4 │
├──────────────────┼────────────────────────────┤
│ input_size │ (416, 416) │
├──────────────────┼────────────────────────────┤
│ multiscale_range │ 5 │
├──────────────────┼────────────────────────────┤
│ data_dir │ None │
├──────────────────┼────────────────────────────┤
│ train_ann │ 'instances_train2017.json' │
├──────────────────┼────────────────────────────┤
│ val_ann │ 'instances_val2017.json' │
├──────────────────┼────────────────────────────┤
│ mosaic_prob │ 0.5 │
├──────────────────┼────────────────────────────┤
│ mixup_prob │ 1.0 │
├──────────────────┼────────────────────────────┤
│ hsv_prob │ 1.0 │
├──────────────────┼────────────────────────────┤
│ flip_prob │ 0.5 │
├──────────────────┼────────────────────────────┤
│ degrees │ 10.0 │
├──────────────────┼────────────────────────────┤
│ translate │ 0.1 │
├──────────────────┼────────────────────────────┤
│ mosaic_scale │ (0.5, 1.5) │
├──────────────────┼────────────────────────────┤
│ mixup_scale │ (0.5, 1.5) │
├──────────────────┼────────────────────────────┤
│ shear │ 2.0 │
├──────────────────┼────────────────────────────┤
│ perspective │ 0.0 │
├──────────────────┼────────────────────────────┤
│ enable_mixup │ False │
├──────────────────┼────────────────────────────┤
│ warmup_epochs │ 5 │
├──────────────────┼────────────────────────────┤
│ max_epoch │ 300 │
├──────────────────┼────────────────────────────┤
│ warmup_lr │ 0 │
├──────────────────┼────────────────────────────┤
│ basic_lr_per_img │ 0.00015625 │
├──────────────────┼────────────────────────────┤
│ scheduler │ 'yoloxwarmcos' │
├──────────────────┼────────────────────────────┤
│ no_aug_epochs │ 15 │
├──────────────────┼────────────────────────────┤
│ min_lr_ratio │ 0.05 │
├──────────────────┼────────────────────────────┤
│ ema │ True │
├──────────────────┼────────────────────────────┤
│ weight_decay │ 0.0005 │
├──────────────────┼────────────────────────────┤
│ momentum │ 0.9 │
├──────────────────┼────────────────────────────┤
│ exp_name │ 'nano' │
├──────────────────┼────────────────────────────┤
│ test_size │ (416, 416) │
├──────────────────┼────────────────────────────┤
│ test_conf │ 0.01 │
├──────────────────┼────────────────────────────┤
│ nmsthre │ 0.65 │
├──────────────────┼────────────────────────────┤
│ random_size │ (10, 20) │
╘══════════════════╧════════════════════════════╛
2021-09-08 14:42:06.468 | INFO | yolox.core.trainer:before_train:133 - Model Summary: Params: 0.91M, Gflops: 1.08
2021-09-08 14:42:08.182 | INFO | yolox.data.datasets.coco:init:45 - loading annotations into memory...
2021-09-08 14:42:20.787 | INFO | yolox.data.datasets.coco:init:45 - Done (t=12.60s)
2021-09-08 14:42:20.787 | INFO | pycocotools.coco:init:92 - creating index...
2021-09-08 14:42:21.736 | INFO | pycocotools.coco:init:92 - index created!
2021-09-08 14:42:50.371 | WARNING | yolox.data.datasets.coco:_cache_images:69 -

but the result is :

2021-09-10 05:46:06.608 | INFO | yolox.core.trainer:save_ckpt:318 - Save weights to ./YOLOX_outputs/nano
2021-09-10 05:46:16.802 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-09-10 05:46:20.158 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-09-10 05:46:24.156 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=4.00s)
2021-09-10 05:46:24.156 | INFO | pycocotools.coco:loadRes:433 - creating index...
2021-09-10 05:46:24.287 | INFO | pycocotools.coco:loadRes:433 - index created!
2021-09-10 05:46:36.375 | INFO | yolox.core.trainer:evaluate_and_save_model:309 -
Average forward time: 0.52 ms, Average NMS time: 0.56 ms, Average inference time: 1.08 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.238
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.388
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.246
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.249
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.383
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.228
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.375
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.128
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.579

2021-09-10 05:46:36.376 | INFO | yolox.core.trainer:save_ckpt:318 - Save weights to ./YOLOX_outputs/nano
2021-09-10 05:46:36.418 | INFO | yolox.core.trainer:after_train:184 - Training of experiment is done and the best AP is 23.83

@Joker316701882
Copy link
Member

@Tim5Tang With this version, we can get the best mAP around 24.

However, the results reported in our tech report and this repo are based on an ImageNet pre-trained model. That's why you can't reproduce the result. But noted that yolox_nano is the only one that adopts the pretrain model.

@Tim5Tang
Copy link
Author

ok, i see thanks.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants