You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2021-09-10 05:46:06.608 | INFO | yolox.core.trainer:save_ckpt:318 - Save weights to ./YOLOX_outputs/nano
2021-09-10 05:46:16.802 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-09-10 05:46:20.158 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-09-10 05:46:24.156 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=4.00s)
2021-09-10 05:46:24.156 | INFO | pycocotools.coco:loadRes:433 - creating index...
2021-09-10 05:46:24.287 | INFO | pycocotools.coco:loadRes:433 - index created!
2021-09-10 05:46:36.375 | INFO | yolox.core.trainer:evaluate_and_save_model:309 -
Average forward time: 0.52 ms, Average NMS time: 0.56 ms, Average inference time: 1.08 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.238
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.388
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.246
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.249
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.383
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.228
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.375
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.128
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.579
2021-09-10 05:46:36.376 | INFO | yolox.core.trainer:save_ckpt:318 - Save weights to ./YOLOX_outputs/nano
2021-09-10 05:46:36.418 | INFO | yolox.core.trainer:after_train:184 - Training of experiment is done and the best AP is 23.83
The text was updated successfully, but these errors were encountered:
@Tim5Tang With this version, we can get the best mAP around 24.
However, the results reported in our tech report and this repo are based on an ImageNet pre-trained model. That's why you can't reproduce the result. But noted that yolox_nano is the only one that adopts the pretrain model.
use the cmd and parameter as follow:
python tools/train.py -n yolox-nano -d 2 -b 64 --fp16 -o --cache
2021-09-08 14:42:06.344 | INFO | yolox.core.trainer:before_train:126 - args: Namespace(batch_size=64, cache=True, ckpt=None, devices=1, dist_backend='nccl', dist_url=None, exp_file=None, experiment_name='nano', fp16=True, machine_rank=0, name='yolox-nano', num_machines=1, occupy=True, opts=[], resume=False, start_epoch=None)
2021-09-08 14:42:06.347 | INFO | yolox.core.trainer:before_train:127 - exp value:
╒══════════════════╤════════════════════════════╕
│ keys │ values │
╞══════════════════╪════════════════════════════╡
│ seed │ None │
├──────────────────┼────────────────────────────┤
│ output_dir │ './YOLOX_outputs' │
├──────────────────┼────────────────────────────┤
│ print_interval │ 10 │
├──────────────────┼────────────────────────────┤
│ eval_interval │ 10 │
├──────────────────┼────────────────────────────┤
│ num_classes │ 80 │
├──────────────────┼────────────────────────────┤
│ depth │ 0.33 │
├──────────────────┼────────────────────────────┤
│ width │ 0.25 │
├──────────────────┼────────────────────────────┤
│ data_num_workers │ 4 │
├──────────────────┼────────────────────────────┤
│ input_size │ (416, 416) │
├──────────────────┼────────────────────────────┤
│ multiscale_range │ 5 │
├──────────────────┼────────────────────────────┤
│ data_dir │ None │
├──────────────────┼────────────────────────────┤
│ train_ann │ 'instances_train2017.json' │
├──────────────────┼────────────────────────────┤
│ val_ann │ 'instances_val2017.json' │
├──────────────────┼────────────────────────────┤
│ mosaic_prob │ 0.5 │
├──────────────────┼────────────────────────────┤
│ mixup_prob │ 1.0 │
├──────────────────┼────────────────────────────┤
│ hsv_prob │ 1.0 │
├──────────────────┼────────────────────────────┤
│ flip_prob │ 0.5 │
├──────────────────┼────────────────────────────┤
│ degrees │ 10.0 │
├──────────────────┼────────────────────────────┤
│ translate │ 0.1 │
├──────────────────┼────────────────────────────┤
│ mosaic_scale │ (0.5, 1.5) │
├──────────────────┼────────────────────────────┤
│ mixup_scale │ (0.5, 1.5) │
├──────────────────┼────────────────────────────┤
│ shear │ 2.0 │
├──────────────────┼────────────────────────────┤
│ perspective │ 0.0 │
├──────────────────┼────────────────────────────┤
│ enable_mixup │ False │
├──────────────────┼────────────────────────────┤
│ warmup_epochs │ 5 │
├──────────────────┼────────────────────────────┤
│ max_epoch │ 300 │
├──────────────────┼────────────────────────────┤
│ warmup_lr │ 0 │
├──────────────────┼────────────────────────────┤
│ basic_lr_per_img │ 0.00015625 │
├──────────────────┼────────────────────────────┤
│ scheduler │ 'yoloxwarmcos' │
├──────────────────┼────────────────────────────┤
│ no_aug_epochs │ 15 │
├──────────────────┼────────────────────────────┤
│ min_lr_ratio │ 0.05 │
├──────────────────┼────────────────────────────┤
│ ema │ True │
├──────────────────┼────────────────────────────┤
│ weight_decay │ 0.0005 │
├──────────────────┼────────────────────────────┤
│ momentum │ 0.9 │
├──────────────────┼────────────────────────────┤
│ exp_name │ 'nano' │
├──────────────────┼────────────────────────────┤
│ test_size │ (416, 416) │
├──────────────────┼────────────────────────────┤
│ test_conf │ 0.01 │
├──────────────────┼────────────────────────────┤
│ nmsthre │ 0.65 │
├──────────────────┼────────────────────────────┤
│ random_size │ (10, 20) │
╘══════════════════╧════════════════════════════╛
2021-09-08 14:42:06.468 | INFO | yolox.core.trainer:before_train:133 - Model Summary: Params: 0.91M, Gflops: 1.08
2021-09-08 14:42:08.182 | INFO | yolox.data.datasets.coco:init:45 - loading annotations into memory...
2021-09-08 14:42:20.787 | INFO | yolox.data.datasets.coco:init:45 - Done (t=12.60s)
2021-09-08 14:42:20.787 | INFO | pycocotools.coco:init:92 - creating index...
2021-09-08 14:42:21.736 | INFO | pycocotools.coco:init:92 - index created!
2021-09-08 14:42:50.371 | WARNING | yolox.data.datasets.coco:_cache_images:69 -
but the result is :
2021-09-10 05:46:06.608 | INFO | yolox.core.trainer:save_ckpt:318 - Save weights to ./YOLOX_outputs/nano
2021-09-10 05:46:16.802 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-09-10 05:46:20.158 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-09-10 05:46:24.156 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=4.00s)
2021-09-10 05:46:24.156 | INFO | pycocotools.coco:loadRes:433 - creating index...
2021-09-10 05:46:24.287 | INFO | pycocotools.coco:loadRes:433 - index created!
2021-09-10 05:46:36.375 | INFO | yolox.core.trainer:evaluate_and_save_model:309 -
Average forward time: 0.52 ms, Average NMS time: 0.56 ms, Average inference time: 1.08 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.238
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.388
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.246
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.249
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.383
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.228
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.375
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.128
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.579
2021-09-10 05:46:36.376 | INFO | yolox.core.trainer:save_ckpt:318 - Save weights to ./YOLOX_outputs/nano
2021-09-10 05:46:36.418 | INFO | yolox.core.trainer:after_train:184 - Training of experiment is done and the best AP is 23.83
The text was updated successfully, but these errors were encountered: