-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem146.x10
172 lines (163 loc) · 3.73 KB
/
problem146.x10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// -*- Java -*- (close enough)
import java.math.BigInteger;
public class problem146 {
private static val aValues = [2, 3, 5, 7, 11, 13, 17, 19, 23];
private static val smallPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43];
public static def powerMod(var a:BigInteger, var b:BigInteger, k:BigInteger):BigInteger {
var result:BigInteger = BigInteger.ONE;
while (true) {
if (b.mod(BigInteger.valueOf(2)).equals(BigInteger.ONE)) {
result = result.multiply(a).mod(k);
}
b = b.shiftRight(1n);
if (b.equals(BigInteger.ZERO)) {
break;
}
a = a.multiply(a).mod(k);
}
return result;
}
public static def millerRabin(n0:long):boolean {
// Factor out powers of 2.
val n:BigInteger = BigInteger.valueOf(n0);
var d:BigInteger = n.subtract(BigInteger.ONE);
var s:long = 0;
while (d.mod(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) {
d = d.divide(BigInteger.valueOf(2));
s += 1;
}
// Now do Miller-Rabin test for each 'a' value.
for (a in aValues) {
var x:BigInteger = powerMod(BigInteger.valueOf(a), d, n);
var y:BigInteger = BigInteger.ONE;
for (var j:long=0L; j < s; j++) {
y = x.multiply(x).mod(n);
if ((y.equals(BigInteger.ONE)) && (!x.equals(BigInteger.ONE)) && (!x.equals(n.subtract(BigInteger.ONE)))) {
return false;
}
x = y;
}
if (!y.equals(BigInteger.ONE)) {
return false;
}
}
return true;
}
public static def isPrime(n:long):boolean {
// Check small primes by hand.
for (p in smallPrimes) {
if (n == p) {
return true;
}
if (n % p == 0) {
return false;
}
}
// Otherwise, do Miller-Rabin.
return millerRabin(n);
}
public static def isValid(n:long):boolean {
val n2 = n * n;
if (!isPrime(n2 + 1)) {
return false;
}
if (isPrime(n2 + 2)) {
return false;
}
if (!isPrime(n2 + 3)) {
return false;
}
if (isPrime(n2 + 4)) {
return false;
}
if (isPrime(n2 + 5)) {
return false;
}
if (isPrime(n2 + 6)) {
return false;
}
if (!isPrime(n2 + 7)) {
return false;
}
if (isPrime(n2 + 8)) {
return false;
}
if (!isPrime(n2 + 9)) {
return false;
}
if (isPrime(n2 + 10)) {
return false;
}
if (isPrime(n2 + 11)) {
return false;
}
if (isPrime(n2 + 12)) {
return false;
}
if (!isPrime(n2 + 13)) {
return false;
}
if (isPrime(n2 + 14)) {
return false;
}
if (isPrime(n2 + 15)) {
return false;
}
if (isPrime(n2 + 16)) {
return false;
}
if (isPrime(n2 + 17)) {
return false;
}
if (isPrime(n2 + 18)) {
return false;
}
if (isPrime(n2 + 19)) {
return false;
}
if (isPrime(n2 + 20)) {
return false;
}
if (isPrime(n2 + 21)) {
return false;
}
if (isPrime(n2 + 22)) {
return false;
}
if (isPrime(n2 + 23)) {
return false;
}
if (isPrime(n2 + 24)) {
return false;
}
if (isPrime(n2 + 25)) {
return false;
}
if (isPrime(n2 + 26)) {
return false;
}
if (!isPrime(n2 + 27)) {
return false;
}
return true;
}
public static def main(args:Rail[String]):void {
var sum:long = 0L;
for (var n:long = 10L; n < 150000000L; n += 10) {
if (n % 3 == 0) {
continue;
}
if (n % 7 != 3 && n % 7 != 4) {
continue;
}
if (n % 13 != 1 && n % 13 != 3 && n % 13 != 4 && n % 13 != 9 && n % 13 != 10 && n % 13 != 12) {
continue;
}
if (isValid(n)) {
sum += n;
}
}
Console.OUT.println(sum);
return;
}
}