-
Notifications
You must be signed in to change notification settings - Fork 14
/
sac.py
717 lines (617 loc) · 27.2 KB
/
sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
# Copyright 2024 The Brax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Soft Actor-Critic training.
See: https://arxiv.org/pdf/1812.05905.pdf
"""
import functools
import time
from typing import Any, Callable, Optional, Tuple, Union, Generic, NamedTuple, Sequence
from absl import logging
from brax import base
from brax import envs
from brax.io import model
from brax.training import gradients
from brax.training import pmap
from brax.training.replay_buffers_test import jit_wrap
from brax.training import types
from brax.training.acme import running_statistics
from brax.training.acme import specs
from brax.training.agents.sac import losses as sac_losses
from brax.training.agents.sac import networks as sac_networks
from brax.training.acme.types import NestedArray
from brax.training.types import Params, Policy
from brax.training.types import PRNGKey
from brax.v1 import envs as envs_v1
import flax
import jax
import jax.numpy as jnp
import optax
from src.evaluator import CrlEvaluator
from src.replay_buffer import QueueBase, Sample
Metrics = types.Metrics
# Transition = types.Transition
Env = Union[envs.Env, envs_v1.Env, envs_v1.Wrapper]
State = Union[envs.State, envs_v1.State]
class Transition(NamedTuple):
"""Container for a transition."""
observation: NestedArray
next_observation: NestedArray
action: NestedArray
reward: NestedArray
discount: NestedArray
extras: NestedArray = () # pytype: disable=annotation-type-mismatch # jax-ndarray
def actor_step(
env: Env,
env_state: State,
policy: Policy,
key: PRNGKey,
extra_fields: Sequence[str] = (),
) -> Tuple[State, Transition]:
"""Collect data."""
actions, policy_extras = policy(env_state.obs, key)
nstate = env.step(env_state, actions)
state_extras = {x: nstate.info[x] for x in extra_fields}
return nstate, Transition( # pytype: disable=wrong-arg-types # jax-ndarray
observation=env_state.obs,
action=actions,
reward=nstate.reward,
discount=1 - nstate.done,
next_observation=nstate.obs,
extras={"policy_extras": policy_extras, "state_extras": state_extras},
)
InferenceParams = Tuple[running_statistics.NestedMeanStd, Params]
ReplayBufferState = Any
_PMAP_AXIS_NAME = "i"
class TrajectoryUniformSamplingQueue(QueueBase[Sample], Generic[Sample]):
"""Implements an uniform sampling limited-size replay queue BUT WITH TRAJECTORIES."""
def sample_internal(self, buffer_state: ReplayBufferState) -> Tuple[ReplayBufferState, Sample]:
if buffer_state.data.shape != self._data_shape:
raise ValueError(
f"Data shape expected by the replay buffer ({self._data_shape}) does "
f"not match the shape of the buffer state ({buffer_state.data.shape})"
)
key, sample_key, shuffle_key = jax.random.split(buffer_state.key, 3)
# NOTE: this is the number of envs to sample but it can be modified if there is OOM
shape = self.num_envs
# Sampling envs idxs
envs_idxs = jax.random.choice(sample_key, jnp.arange(self.num_envs), shape=(shape,), replace=False)
@functools.partial(jax.jit, static_argnames=("rows", "cols"))
def create_matrix(rows, cols, min_val, max_val, rng_key):
rng_key, subkey = jax.random.split(rng_key)
start_values = jax.random.randint(subkey, shape=(rows,), minval=min_val, maxval=max_val)
row_indices = jnp.arange(cols)
matrix = start_values[:, jnp.newaxis] + row_indices
return matrix
@jax.jit
def create_batch(arr_2d, indices):
return jnp.take(arr_2d, indices, axis=0, mode="wrap")
create_batch_vmaped = jax.vmap(create_batch, in_axes=(1, 0))
matrix = create_matrix(
shape,
self.episode_length,
buffer_state.sample_position,
buffer_state.insert_position - self.episode_length,
sample_key,
)
batch = create_batch_vmaped(buffer_state.data[:, envs_idxs, :], matrix)
transitions = self._unflatten_fn(batch)
return buffer_state.replace(key=key), transitions
@staticmethod
@functools.partial(jax.jit, static_argnames=["config", "env"])
def flatten_crl_fn(config, env, transition: Transition, sample_key: PRNGKey) -> Transition:
if config.use_her:
# Find truncation indexes if present
seq_len = transition.observation.shape[0]
arrangement = jnp.arange(seq_len)
is_future_mask = jnp.array(arrangement[:, None] < arrangement[None], dtype=jnp.float32)
single_trajectories = jnp.concatenate(
[transition.extras["state_extras"]["traj_id"][:, jnp.newaxis].T] * seq_len, axis=0
)
# final_step_mask.shape == (seq_len, seq_len)
final_step_mask = is_future_mask * jnp.equal(single_trajectories, single_trajectories.T) + jnp.eye(seq_len) * 1e-5
final_step_mask = jnp.logical_and(final_step_mask, transition.extras["state_extras"]["truncation"][None, :])
non_zero_columns = jnp.nonzero(final_step_mask, size=seq_len)[1]
# If final state is not present use original goal (i.e. don't change anything)
new_goals_idx = jnp.where(non_zero_columns == 0, arrangement, non_zero_columns)
binary_mask = jnp.logical_and(non_zero_columns, non_zero_columns)
new_goals = (
binary_mask[:, None] * transition.observation[new_goals_idx][:, env.goal_indices]
+ jnp.logical_not(binary_mask)[:, None] * transition.observation[new_goals_idx][:, env.state_dim :]
)
# Transform observation
state = transition.observation[:, : env.state_dim]
new_obs = jnp.concatenate([state, new_goals], axis=1)
# Recalculate reward
dist = jnp.linalg.norm(new_obs[:, env.state_dim :] - new_obs[:, env.goal_indices], axis=1)
new_reward = jnp.array(dist < env.goal_dist, dtype=float)
# Transform next observation
next_state = transition.next_observation[:, : env.state_dim]
new_next_obs = jnp.concatenate([next_state, new_goals], axis=1)
return transition._replace(
observation=jnp.squeeze(new_obs),
next_observation=jnp.squeeze(new_next_obs),
reward=jnp.squeeze(new_reward),
)
return transition
@flax.struct.dataclass
class TrainingState:
"""Contains training state for the learner."""
policy_optimizer_state: optax.OptState
policy_params: Params
q_optimizer_state: optax.OptState
q_params: Params
target_q_params: Params
gradient_steps: jnp.ndarray
env_steps: jnp.ndarray
alpha_optimizer_state: optax.OptState
alpha_params: Params
normalizer_params: running_statistics.RunningStatisticsState
def _unpmap(v):
return jax.tree_util.tree_map(lambda x: x[0], v)
def _init_training_state(
key: PRNGKey,
obs_size: int,
local_devices_to_use: int,
sac_network: sac_networks.SACNetworks,
alpha_optimizer: optax.GradientTransformation,
policy_optimizer: optax.GradientTransformation,
q_optimizer: optax.GradientTransformation,
) -> TrainingState:
"""Inits the training state and replicates it over devices."""
key_policy, key_q = jax.random.split(key)
log_alpha = jnp.asarray(0.0, dtype=jnp.float32)
alpha_optimizer_state = alpha_optimizer.init(log_alpha)
policy_params = sac_network.policy_network.init(key_policy)
policy_optimizer_state = policy_optimizer.init(policy_params)
q_params = sac_network.q_network.init(key_q)
q_optimizer_state = q_optimizer.init(q_params)
normalizer_params = running_statistics.init_state(specs.Array((obs_size,), jnp.dtype("float32")))
training_state = TrainingState(
policy_optimizer_state=policy_optimizer_state,
policy_params=policy_params,
q_optimizer_state=q_optimizer_state,
q_params=q_params,
target_q_params=q_params,
gradient_steps=jnp.zeros(()),
env_steps=jnp.zeros(()),
alpha_optimizer_state=alpha_optimizer_state,
alpha_params=log_alpha,
normalizer_params=normalizer_params,
)
return jax.device_put_replicated(training_state, jax.local_devices()[:local_devices_to_use])
def train(
environment: Union[envs_v1.Env, envs.Env],
num_timesteps,
episode_length: int,
action_repeat: int = 1,
num_envs: int = 1,
num_eval_envs: int = 128,
learning_rate: float = 1e-4,
discounting: float = 0.9,
seed: int = 0,
batch_size: int = 256,
num_evals: int = 1,
normalize_observations: bool = False,
max_devices_per_host: Optional[int] = None,
reward_scaling: float = 1.0,
tau: float = 0.005,
min_replay_size: int = 0,
max_replay_size: Optional[int] = None,
deterministic_eval: bool = False,
network_factory: types.NetworkFactory[sac_networks.SACNetworks] = sac_networks.make_sac_networks,
progress_fn: Callable[[int, Metrics], None] = lambda *args: None,
train_step_multiplier: int = 1,
unroll_length: int = 50,
config: NamedTuple = None,
checkpoint_logdir: Optional[str] = None,
eval_env: Optional[envs.Env] = None,
randomization_fn: Optional[Callable[[base.System, jnp.ndarray], Tuple[base.System, base.System]]] = None,
):
"""SAC training."""
process_id = jax.process_index()
local_devices_to_use = jax.local_device_count()
if max_devices_per_host is not None:
local_devices_to_use = min(local_devices_to_use, max_devices_per_host)
device_count = local_devices_to_use * jax.process_count()
logging.info("local_device_count: %s; total_device_count: %s", local_devices_to_use, device_count)
if min_replay_size >= num_timesteps:
raise ValueError("No training will happen because min_replay_size >= num_timesteps")
if max_replay_size is None:
max_replay_size = num_timesteps
# The number of environment steps executed for every `actor_step()` call.
env_steps_per_actor_step = action_repeat * num_envs * unroll_length
num_prefill_actor_steps = min_replay_size // unroll_length + 1
print("Num_prefill_actor_steps: ", num_prefill_actor_steps)
num_prefill_env_steps = num_prefill_actor_steps * env_steps_per_actor_step
assert num_timesteps - min_replay_size >= 0
num_evals_after_init = max(num_evals - 1, 1)
# The number of epoch calls per training
# equals to
# ceil(num_timesteps - num_prefill_env_steps /
# (num_evals_after_init * env_steps_per_actor_step))
num_training_steps_per_epoch = -(
-(num_timesteps - num_prefill_env_steps) // (num_evals_after_init * env_steps_per_actor_step)
)
assert num_envs % device_count == 0
env = environment
if isinstance(env, envs.Env):
wrap_for_training = envs.training.wrap
else:
wrap_for_training = envs_v1.wrappers.wrap_for_training
rng = jax.random.PRNGKey(seed)
rng, key = jax.random.split(rng)
v_randomization_fn = None
if randomization_fn is not None:
v_randomization_fn = functools.partial(
randomization_fn,
rng=jax.random.split(key, num_envs // jax.process_count() // local_devices_to_use),
)
env = wrap_for_training(
env,
episode_length=episode_length,
action_repeat=action_repeat,
randomization_fn=v_randomization_fn,
)
obs_size = env.observation_size
action_size = env.action_size
normalize_fn = lambda x, y: x
if normalize_observations:
normalize_fn = running_statistics.normalize
sac_network = network_factory(
observation_size=obs_size, action_size=action_size, preprocess_observations_fn=normalize_fn
)
make_policy = sac_networks.make_inference_fn(sac_network)
alpha_optimizer = optax.adam(learning_rate=3e-4)
policy_optimizer = optax.adam(learning_rate=learning_rate)
q_optimizer = optax.adam(learning_rate=learning_rate)
dummy_obs = jnp.zeros((obs_size,))
dummy_action = jnp.zeros((action_size,))
dummy_transition = Transition( # pytype: disable=wrong-arg-types # jax-ndarray
observation=dummy_obs,
next_observation=dummy_obs,
action=dummy_action,
reward=0.0,
discount=0.0,
extras={
"state_extras": {
"truncation": 0.0,
"traj_id": 0.0,
},
"policy_extras": {},
},
)
replay_buffer = jit_wrap(
TrajectoryUniformSamplingQueue(
max_replay_size=max_replay_size // device_count,
dummy_data_sample=dummy_transition,
sample_batch_size=batch_size // device_count,
num_envs=num_envs,
episode_length=episode_length,
)
)
alpha_loss, critic_loss, actor_loss = sac_losses.make_losses(
sac_network=sac_network, reward_scaling=reward_scaling, discounting=discounting, action_size=action_size
)
alpha_update = gradients.gradient_update_fn( # pytype: disable=wrong-arg-types # jax-ndarray
alpha_loss, alpha_optimizer, pmap_axis_name=_PMAP_AXIS_NAME
)
critic_update = gradients.gradient_update_fn( # pytype: disable=wrong-arg-types # jax-ndarray
critic_loss, q_optimizer, pmap_axis_name=_PMAP_AXIS_NAME
)
actor_update = gradients.gradient_update_fn( # pytype: disable=wrong-arg-types # jax-ndarray
actor_loss, policy_optimizer, pmap_axis_name=_PMAP_AXIS_NAME
)
def update_step(
carry: Tuple[TrainingState, PRNGKey], transitions: Transition
) -> Tuple[Tuple[TrainingState, PRNGKey], Metrics]:
training_state, key = carry
key, key_alpha, key_critic, key_actor = jax.random.split(key, 4)
alpha_loss, alpha_params, alpha_optimizer_state = alpha_update(
training_state.alpha_params,
training_state.policy_params,
training_state.normalizer_params,
transitions,
key_alpha,
optimizer_state=training_state.alpha_optimizer_state,
)
alpha = jnp.exp(training_state.alpha_params)
critic_loss, q_params, q_optimizer_state = critic_update(
training_state.q_params,
training_state.policy_params,
training_state.normalizer_params,
training_state.target_q_params,
alpha,
transitions,
key_critic,
optimizer_state=training_state.q_optimizer_state,
)
actor_loss, policy_params, policy_optimizer_state = actor_update(
training_state.policy_params,
training_state.normalizer_params,
training_state.q_params,
alpha,
transitions,
key_actor,
optimizer_state=training_state.policy_optimizer_state,
)
new_target_q_params = jax.tree_util.tree_map(
lambda x, y: x * (1 - tau) + y * tau, training_state.target_q_params, q_params
)
metrics = {
"critic_loss": critic_loss,
"actor_loss": actor_loss,
"alpha_loss": alpha_loss,
"alpha": jnp.exp(alpha_params),
}
new_training_state = TrainingState(
policy_optimizer_state=policy_optimizer_state,
policy_params=policy_params,
q_optimizer_state=q_optimizer_state,
q_params=q_params,
target_q_params=new_target_q_params,
gradient_steps=training_state.gradient_steps + 1,
env_steps=training_state.env_steps,
alpha_optimizer_state=alpha_optimizer_state,
alpha_params=alpha_params,
normalizer_params=training_state.normalizer_params,
)
return (new_training_state, key), metrics
def get_experience(
normalizer_params: running_statistics.RunningStatisticsState,
policy_params: Params,
env_state: Union[envs.State, envs_v1.State],
buffer_state: ReplayBufferState,
key: PRNGKey,
) -> Tuple[
running_statistics.RunningStatisticsState,
Union[envs.State, envs_v1.State],
ReplayBufferState,
]:
policy = make_policy((normalizer_params, policy_params))
@jax.jit
def f(carry, unused_t):
env_state, current_key = carry
current_key, next_key = jax.random.split(current_key)
env_state, transition = actor_step(
env,
env_state,
policy,
current_key,
extra_fields=(
"truncation",
"traj_id",
),
)
return (env_state, next_key), transition
(env_state, _), data = jax.lax.scan(f, (env_state, key), (), length=unroll_length)
normalizer_params = running_statistics.update(
normalizer_params,
jax.tree_util.tree_map(
lambda x: jnp.reshape(x, (-1,) + x.shape[2:]), data
).observation, # so that batch size*unroll_length is the first dimension
pmap_axis_name=_PMAP_AXIS_NAME,
)
buffer_state = replay_buffer.insert(buffer_state, data)
return normalizer_params, env_state, buffer_state
def training_step(
training_state: TrainingState,
env_state: envs.State,
buffer_state: ReplayBufferState,
key: PRNGKey,
) -> Tuple[TrainingState, Union[envs.State, envs_v1.State], ReplayBufferState, Metrics]:
experience_key, training_key = jax.random.split(key)
normalizer_params, env_state, buffer_state = get_experience(
training_state.normalizer_params,
training_state.policy_params,
env_state,
buffer_state,
experience_key,
)
training_state = training_state.replace(
normalizer_params=normalizer_params,
env_steps=training_state.env_steps + env_steps_per_actor_step,
)
training_state, buffer_state, metrics = train_steps(training_state, buffer_state, training_key)
return training_state, env_state, buffer_state, metrics
def prefill_replay_buffer(
training_state: TrainingState,
env_state: envs.State,
buffer_state: ReplayBufferState,
key: PRNGKey,
) -> Tuple[TrainingState, envs.State, ReplayBufferState, PRNGKey]:
def f(carry, unused):
del unused
training_state, env_state, buffer_state, key = carry
key, new_key = jax.random.split(key)
new_normalizer_params, env_state, buffer_state = get_experience(
training_state.normalizer_params,
training_state.policy_params,
env_state,
buffer_state,
key,
)
new_training_state = training_state.replace(
normalizer_params=new_normalizer_params,
env_steps=training_state.env_steps + env_steps_per_actor_step,
)
return (new_training_state, env_state, buffer_state, new_key), ()
return jax.lax.scan(
f,
(training_state, env_state, buffer_state, key),
(),
length=num_prefill_actor_steps,
)[0]
prefill_replay_buffer = jax.pmap(prefill_replay_buffer, axis_name=_PMAP_AXIS_NAME)
def train_steps(
training_state: TrainingState,
buffer_state: ReplayBufferState,
key: PRNGKey,
) -> Tuple[TrainingState, ReplayBufferState, Metrics]:
experience_key, training_key, sampling_key = jax.random.split(key, 3)
buffer_state, transitions = replay_buffer.sample(buffer_state)
batch_keys = jax.random.split(sampling_key, transitions.observation.shape[0])
transitions = jax.vmap(TrajectoryUniformSamplingQueue.flatten_crl_fn, in_axes=(None, None, 0, 0))(
config, env, transitions, batch_keys
)
# Shuffle transitions and reshape them into (number_of_sgd_steps, batch_size, ...)
transitions = jax.tree_util.tree_map(
lambda x: jnp.reshape(x, (-1,) + x.shape[2:], order="F"),
transitions,
)
permutation = jax.random.permutation(experience_key, len(transitions.observation))
transitions = jax.tree_util.tree_map(lambda x: x[permutation], transitions)
transitions = jax.tree_util.tree_map(
lambda x: jnp.reshape(x, (-1, batch_size) + x.shape[1:]),
transitions,
)
(training_state, _), metrics = jax.lax.scan(update_step, (training_state, training_key), transitions)
return training_state, buffer_state, metrics
def scan_train_steps(n, ts, bs, update_key):
def body(carry, unsued_t):
ts, bs, update_key = carry
new_key, update_key = jax.random.split(update_key)
ts, bs, metrics = train_steps(ts, bs, update_key)
return (ts, bs, new_key), metrics
return jax.lax.scan(body, (ts, bs, update_key), (), length=n)
def training_epoch(
training_state: TrainingState,
env_state: envs.State,
buffer_state: ReplayBufferState,
key: PRNGKey,
) -> Tuple[TrainingState, envs.State, ReplayBufferState, Metrics]:
def f(carry, unused_t):
ts, es, bs, k = carry
k, new_key, update_key = jax.random.split(k, 3)
ts, es, bs, metrics = training_step(ts, es, bs, k)
(ts, bs, update_key), _ = scan_train_steps(train_step_multiplier - 1, ts, bs, update_key)
return (ts, es, bs, new_key), metrics
(training_state, env_state, buffer_state, key), metrics = jax.lax.scan(
f,
(training_state, env_state, buffer_state, key),
(),
length=num_training_steps_per_epoch,
)
metrics["buffer_current_size"] = replay_buffer.size(buffer_state)
metrics = jax.tree_util.tree_map(jnp.mean, metrics)
return training_state, env_state, buffer_state, metrics
training_epoch = jax.pmap(training_epoch, axis_name=_PMAP_AXIS_NAME)
# Note that this is NOT a pure jittable method.
def training_epoch_with_timing(
training_state: TrainingState, env_state: envs.State, buffer_state: ReplayBufferState, key: PRNGKey
) -> Tuple[TrainingState, envs.State, ReplayBufferState, Metrics]:
nonlocal training_walltime
t = time.time()
(training_state, env_state, buffer_state, metrics) = training_epoch(
training_state, env_state, buffer_state, key
)
metrics = jax.tree_util.tree_map(jnp.mean, metrics)
jax.tree_util.tree_map(lambda x: x.block_until_ready(), metrics)
epoch_training_time = time.time() - t
training_walltime += epoch_training_time
sps = (env_steps_per_actor_step * num_training_steps_per_epoch) / epoch_training_time
metrics = {
"training/sps": sps,
"training/walltime": training_walltime,
**{f"training/{name}": value for name, value in metrics.items()},
}
return training_state, env_state, buffer_state, metrics # pytype: disable=bad-return-type # py311-upgrade
global_key, local_key = jax.random.split(rng)
local_key = jax.random.fold_in(local_key, process_id)
# Training state init
training_state = _init_training_state(
key=global_key,
obs_size=obs_size,
local_devices_to_use=local_devices_to_use,
sac_network=sac_network,
alpha_optimizer=alpha_optimizer,
policy_optimizer=policy_optimizer,
q_optimizer=q_optimizer,
)
del global_key
local_key, rb_key, env_key, eval_key = jax.random.split(local_key, 4)
# Env init
env_keys = jax.random.split(env_key, num_envs // jax.process_count())
env_keys = jnp.reshape(env_keys, (local_devices_to_use, -1) + env_keys.shape[1:])
env_state = jax.pmap(env.reset)(env_keys)
# Replay buffer init
buffer_state = jax.pmap(replay_buffer.init)(jax.random.split(rb_key, local_devices_to_use))
if not eval_env:
eval_env = environment
if randomization_fn is not None:
v_randomization_fn = functools.partial(randomization_fn, rng=jax.random.split(eval_key, num_eval_envs))
eval_env = wrap_for_training(
eval_env,
episode_length=episode_length,
action_repeat=action_repeat,
randomization_fn=v_randomization_fn,
)
evaluator = CrlEvaluator(
eval_env,
functools.partial(make_policy, deterministic=deterministic_eval),
num_eval_envs=num_eval_envs,
episode_length=episode_length,
action_repeat=action_repeat,
key=eval_key,
)
# Run initial eval
metrics = {}
if process_id == 0 and num_evals > 1:
metrics = evaluator.run_evaluation(
_unpmap((training_state.normalizer_params, training_state.policy_params)), training_metrics={}
)
logging.info(metrics)
progress_fn(0, metrics)
# Create and initialize the replay buffer.
t = time.time()
prefill_key, local_key = jax.random.split(local_key)
prefill_keys = jax.random.split(prefill_key, local_devices_to_use)
training_state, env_state, buffer_state, _ = prefill_replay_buffer(
training_state, env_state, buffer_state, prefill_keys
)
replay_size = jnp.sum(jax.vmap(replay_buffer.size)(buffer_state)) * jax.process_count()
logging.info("replay size after prefill %s", replay_size)
assert replay_size >= min_replay_size
training_walltime = time.time() - t
current_step = 0
for _ in range(num_evals_after_init):
logging.info("step %s", current_step)
# Optimization
epoch_key, local_key = jax.random.split(local_key)
epoch_keys = jax.random.split(epoch_key, local_devices_to_use)
(training_state, env_state, buffer_state, training_metrics) = training_epoch_with_timing(
training_state, env_state, buffer_state, epoch_keys
)
current_step = int(_unpmap(training_state.env_steps))
# Eval and logging
if process_id == 0:
if checkpoint_logdir:
# Save current policy.
params = _unpmap((training_state.normalizer_params, training_state.policy_params))
path = f"{checkpoint_logdir}_sac_{current_step}.pkl"
model.save_params(path, params)
# Run evals.
metrics = evaluator.run_evaluation(
_unpmap((training_state.normalizer_params, training_state.policy_params)), training_metrics
)
logging.info(metrics)
progress_fn(current_step, metrics)
total_steps = current_step
assert total_steps >= num_timesteps
params = _unpmap((training_state.normalizer_params, training_state.policy_params))
# If there was no mistakes the training_state should still be identical on all
# devices.
pmap.assert_is_replicated(training_state)
logging.info("total steps: %s", total_steps)
pmap.synchronize_hosts()
return (make_policy, params, metrics)