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deep learning at Microsoft

• Microsoft Cognitive Services

• Skype Translator

• Cortana

• Bing

• HoloLens

• Microsoft Research
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ImageNet: Microsoft 2015 ResNet
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7.3 6.7
3.5

ILSVRC
2010 NEC
America
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2011 Xerox
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2012

AlexNet
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2013 Clarifi

ILSVRC
2014 VGG
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2014

GoogleNet

ILSVRC
2015 ResNet

ImageNet Classification top-5 error (%)

Microsoft had all 5 entries being the 1-st places this year: ImageNet classification, 

ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation
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deep learning at Microsoft

• Microsoft Cognitive Services

• Skype Translator

• Cortana

• Bing

• HoloLens

• Microsoft Research
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Microsoft’s historic
speech breakthrough 

• Microsoft 2016 research system for

conversational speech recognition 

• 5.9% word-error rate

• enabled by CNTK’s multi-server scalability

[W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,

D. Yu, G. Zweig: “Achieving Human Parity in Conversational

Speech Recognition,” https://arxiv.org/abs/1610.05256]



Youtube Link

https://www.youtube.com/watch?v=eu9kMIeS0wQ;start=70


I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion
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• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w [Perceptron, Rosenblatt 1957]

deep neural networks in a single slide

w4

w2

w1

w3

x1
x2

x3

x4

h

sum: Sj wj ∙ xj

saturate: s

example saturation:

sigmoid function

[images from Wikipedia]
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• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

W x =                                     x =                        x

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

(   )
w11, w12, ..w1N

w21, w22, ..w2N

…

wM1, wM2, ..wMN

( )
pattern1

pattern2

…

patternN

e.g. 2000

neurons

correlate

with patterns



Microsoft

Cognitive

Toolkit

• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1)) 

h(2) = s(W(2) h(1) + b(2))

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

( )
pattern1

pattern2

…

patternN

W(1) =

abstract pattern1

abstract pattern2

…

abstract patternN

(   )W(2) =
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• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1)) 

h(2) = s(W(2) h(1) + b(2))

• connectivity can be local (spatial receptive fields)

h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s
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• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1)) 

h(2) = s(W(2) h(1) + b(2))

• connectivity can be local (spatial receptive fields)

h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• can form feedback loops

h(t) = s(W x(t) + R h(t-1) + b)

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

RNN 
block

delay

x(t)

h(t)

CLK
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• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1)) 

h(2) = s(W(2) h(1) + b(2))

• connectivity can be local (spatial receptive fields)

h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• can form feedback loops

h(t) = s(W x(t) + R h(t-1) + b)

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

RNN 
block

delay

x(t)

h(t)
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deep
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fully connected
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• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership,” where

the N classes overlap and are whatever the training process found

fully connected (FCN), convolutional (CNN), recurrent (RNN)

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

h1

h2

P

x
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• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership,” where

the N classes overlap and are whatever the training process found

• is something with a sharp increase of higher-frequency broadband noise

• is something with a broad spectral peak at 820 Hz

• is something with broadly low energy

• is something with a spectral peak at 1 kHz moving up

• …

fully connected (FCN), convolutional (CNN), recurrent (RNN)

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

h1

h2

P

x
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• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership.”

• convolutional (CNN) h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• repeatedly applies a little FCN over images or other repetitive structures

fully connected (FCN), convolutional (CNN), recurrent (RNN)



Microsoft

Cognitive

Toolkit

• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership.”

• convolutional (CNN) h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• repeatedly applies a little FCN over images or other repetitive structures

• recurrent (RNN) h(t) = s(W x(t) + R h(t-1) + b)

• repeatedly applies a FCN over a sequence, using its own previous output

fully connected (FCN), convolutional (CNN), recurrent (RNN)
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• fully connected (FCN) map

• describes objects through probabilities of “class membership.”

• convolutional (CNN) windowed >> map FIR filter

• repeatedly applies a little FCN over images or other repetitive structures

• recurrent (RNN) scanl, foldl, unfold IIR filter

• repeatedly applies a FCN over a sequence, using its own previous output

• most interesting applications are composite functions of these, e.g.:
• translation: RNN encoder (fold) + RNN decoder (unfold) + beam search [Sutskever et al., 2014]

• image captioning: CNN stack + FCN classifier + text generator  [Fang et al., 2015]

• Generative Adversarial Nets: inverted CNN stack trying to fool a CNN stack [Goodfellow et al., 2015]

• Neural Turing machines: multiple RNNs learn algorithms from data [Graves et al., 2015]

fully connected (FCN), convolutional (CNN), recurrent (RNN)
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illustration: Conway’s game of life, hand-crafted

[https://en.wikipedia.org/wiki/Conway's_Game_of_Life]
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-1
-1

-1,-1,-1,-1,-1,-1,-1,-1,-1       -1
-1,-1,-1,-1,-1,-1,-1,-1,+1       -1
-1,-1,-1,-1,-1,-1,-1,+1,-1       -1
...                              +1
+1,+1,+1,+1,+1,+1,+1,+1,+1       +1

-1
+1

(       )()• create a 2-layer FCN that implements the propagation rules

• Layer 1:

• represent the 9 bits as a 9-dim vector of {-1, +1}

• W(1) enumerates all 512 input patterns, threshold for “all match”

h(1) = r(W(1) x + b) ; b = –8; r(z) = max(z,0)

• Layer 2:

• W(2) enumerates output values of truth table: (0, 0, 0, 1, ..., 1, ..., 0)

h(2) = s(W(2) h(1) + b) ; b = – 0.5 ; s(z) = sgn(z)

• apply independently to every pixel position to perform one step  CNN

• unfold this over time  RNN

• game of life is a universal Turing machine

 so are deep recurrent networks

illustration: Conway’s game of life, hand-crafted

[https://en.wikipedia.org/wiki/Conway's_Game_of_Life]
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• training

• find weight parameters (W(n), b(n)) as to match some criterion function

• supervised learning  classify an input

• unsupervised learning  discover hidden structure in data

• reinforcement learning  interact with an environment to maximize reward

• stochastic gradient descent (SGD)

• feed input sample, compare to desired output

• iteratively take a step in the direction of the gradient of the criterion function w.r.t. a weight parameter

• gradients are computed through automatic differentiation

• SGD training is VERY expensive

• speech: 100M MACs/sample, 3.6B samples, 3 passes, fw+bw  1018 MACs

• image: 4.4B MACs/sample, 1.2M samples, 120 passes , fw+bw  1019 MACs

• Titan X GPU (3840 CUDA cores): peak 3.5 1012 MACs/s  1+ weeks

training deep neural networks with SGD

CNTK / OpenAI Gym

[Morgan Funtowicz]
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deep-learning toolkits must address two questions:

• how to author neural networks?  user’s job

• how to execute them efficiently? (training/test)  tool’s job!!



I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion
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• CNTK is a library for deep neural networks
• model definition

• scalable training

• efficient I/O

• makes it easy to author, train, and use neural networks
• think “what” not “how”

• focus on composability

• functional-style EDSL on top of Python on top of C++ API/library

• open source since 2015       https://github.com/Microsoft/CNTK

• created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit”

• contributions from MS product groups and external (e.g. MIT, Stanford), development is visible on Github

• Linux, Windows, docker, cudnn5, CUDA 8

Microsoft Cognitive Toolkit, CNTK
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from cntk import *

# reader
def create_reader(path, is_training):

...

# network
def create_model_function():

...
def create_criterion_function(model):

...

# trainer (and evaluator)
def train(reader, model):

...
def evaluate(reader, model):

...

# main function
model = create_model_function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

Microsoft Cognitive Toolkit, CNTK



Microsoft

Cognitive

Toolkit

Microsoft Cognitive Toolkit, CNTK
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-- GPU execution
-- optimization
-- parallelization
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expression-graph representation of neural networks

example: 2-hidden layer feed-forward NN

h1 =  s(W1 x + b1) h1 = sigmoid (x  @ W1   + b1)

h2 =  s(W2 h1 + b2) h2 = sigmoid (h1 @ W2   + b2)

P =  softmax(Wout h2 + bout) P  = softmax (h2 @ Wout + bout)

with input x  RM and one-hot label y  RJ

and cross-entropy training criterion

ce =  yT log P ce = cross_entropy (P, y)

Scorpusce =   max
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expression-graph representation of neural networks

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

h1 = sigmoid (x  @ W1   + b1)

h2 = sigmoid (h1 @ W2   + b2)

P  = softmax (h2 @ Wout + bout)

ce = cross_entropy (P, y)

ce

expression tree with

• primitive ops

• values (tensors)

• composite ops
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expression-graph representation of neural networks

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

ce

why the expression-graph detour?

• automatic differentiation!!
• chain rule: ∂F / ∂in = ∂F / ∂out ∙ ∂out / ∂in

• run graph backwards

 “back propagation”
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expression graphs vs. imperative Python 
code

• Theano, TensorFlow:
• expression graph is user surface; user builds the graph

• Python functions are just code-generation macros; one “programs at a distance” [John 

Launchbury]

• referential transparency problem, e.g. what does this really mean? [Bruno Bozza]

y = tf.contrib.layers.fully_connected(x, num_outputs=512, scope=variable_scope)

 graph is too low an abstraction level, implementation detail

• Chainer, DyNet:
• imperative computation, also builds a graph for back prop only

• re-done for each input  can implement arbitrary algorithms in any coding style

• but control flow opaque to toolkit  parallelization (batching) left to user

 imperative execution is too high an abstraction level for optimization
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authoring networks as functions

• CNTK model: neural networks are functions, and reasoned about as such
• pure functions (cannot modify state)

• with “special powers”:
• can compute a gradient w.r.t. any of its nodes

• external deity can update model parameters (but think creating a new function from an old one)

• user specifies network as function objects:
• formula as a Python function (low level, e.g. LSTM)

• function composition of smaller sub-networks (layering)

• higher-order functions (equiv. of scan, fold, unfold)

• model parameters owned (closed over) by the function objects  solves referential transparency

• “compiled” into the static execution graph under the hood
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• “model function”
• features predictions

• defines the model structure & parameter initialization

• holds parameters that will be learned by training

• “criterion function”
• (features, labels)  (training loss, additional metrics)

• defines training and evaluation criteria on top of the model function

• provides gradients w.r.t. training criteria

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

ce
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authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

# --- graph building ---

M = 40 ; H = 512 ; J = 9000  # feat/hid/out dim

# define learnable parameters

W1   = Parameter((M,H)); b1   = Parameter(H)

W2   = Parameter((H,H)); b2   = Parameter(H)

Wout = Parameter((H,J)); bout = Parameter(J)

# build the graph

x = Input(M) ; y = Input(J)  # feat/labels

h1 = sigmoid(x  @ W1   + b1)

h2 = sigmoid(h1 @ W2   + b2)

P  = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, y)

ce
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authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

# --- graph building with function objects ---

M = 40 ; H = 512 ; J = 9000  # feat/hid/out dim

#  - function objects own the learnable parameters

#  - here used as blocks in graph building

x = Input(M) ;  y = Input(J)  # feat/labels

h1 = Dense(H, activation=sigmoid)(x)

h2 = Dense(H, activation=sigmoid)(h1)

P  = Dense(J, activation=softmax)(h2)

ce = cross_entropy(P, y)

ce
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authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

M = 40 ; H = 512 ; J = 9000  # feat/hid/out dim

# function composition

model = (Dense(H, activation=sigmoid) >>

Dense(H, activation=sigmoid) >>

Dense(J, activation=softmax))

# criterion as function, invokes model function

@Function

def crit(x: Tensor[M], y: Tensor[J]):

P = model(x)

return cross_entropy(P, y)

# function is passed to trainer

tr = Trainer(crit, Learner(model.parameters), …)

ce
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authoring networks as functions

enables higher-order functions:

• forward composition:

model = Dense(H, activation=sigmoid) >> Dense(H, activation=sigmoid) >> Dense(J)

• recurrence (scanl/foldl):

model = (Embedding(emb_dim, name='embed') >>
Recurrence(RNNUnit(hidden_dim)) >>  # == scanl over recurrent block
Dense(num_labels, name='out_projection'))

• unfold:

model = UnfoldFrom(lambda history: s2smodel(history, input) >> hardmax,
until_predicate=lambda w: w[...,sentence_end_index],
length_increase=length_increase)

output = model(START_SYMBOL)
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Layers lib: full list of layers/blocks
• layers/blocks.py:

• LSTM(), GRU(), RNNUnit()
• Stabilizer(), identity
• ForwardDeclaration(), Tensor[], SparseTensor[], Sequence[], SequenceOver[]

• layers/layers.py:
• Dense(), Embedding()
• Convolution(), Convolution1D(), Convolution2D(), Convolution3D(), Deconvolution()
• MaxPooling(), AveragePooling(), GlobalMaxPooling(), GlobalAveragePooling(), MaxUnpooling()
• BatchNormalization(), LayerNormalization()
• Dropout(), Activation()
• Label()

• layers/higher_order_layers.py:
• Sequential(), For(), operator >>, (function tuples)
• ResNetBlock(), SequentialClique()

• layers/sequence.py:
• Delay(), PastValueWindow()
• Recurrence(), RecurrenceFrom(), Fold(), UnfoldFrom()

• models/models.py:
• AttentionModel()
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high performance with GPUs

• after being stuck for decades, GPUs made NN
research and experimentation productive

• must turn DNNs into parallel programs

• two main priorities in GPU computing:

1. make sure all CUDA cores are always busy
• Titan X: 3072 parallel processors, so single threaded code would

only get 1/3072 = 0.03% of peak performance

2. read from GPU RAM as little as possible
• reading a float and using it once = 4 bytes for 1 operation

= 288 GB/sec * ¼ GFLOP/GB = 72 GFLOP/sec peak = 72/7000
= 1% utilization

• even if you use all CUDA cores!

[Jacob Devlin, NLPCC 2016 Tutorial]
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parallel programs through minibatching

• minibatching := batch N samples, e.g. N=256; execute in lockstep
• turns N matrix-vector products into

one matrix-matrix product

• cuBLAS gets close to peak performance

• benefits element-wise ops and reductions, too

• key enabler

• limits:
• convergence

• cross-sample dependencies (recurrent nets)

• memory size

• difficult to get right
 CNTK makes batching fully transparent
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improved parallelism through operation fusion
[Jacob Devlin, Efficient Training and Deployment of Large Scale Deep Learning Systems for NLP, NLPCC 2016]

• example “gated recurrent unit” (GRU), a popular recurrent unit

u(t) = s(Wu x(t) + Ru h(t-1) + bu) 6 matrix-vector multiplications
r(t) = s(Wr x(t) + Rr h(t-1) + br) 14 element-wise functions
c(t) = tanh(Wc x(t) + ri ⨀ (Rc h(t-1)) + bc)
h(t) = (1-u(t)) ⨀ h(t-1) + u(t) ⨀ c(t)

• operation fusion:
• combine matrix products: stack (Ru, Rr, Rc) and (Wu, Wr, Wc)  better core use

• pull products with x(t) outside the loop  single launch

• combine element-wise operations  avoid memory round trips

Model 𝑵 = 𝟔𝟒,𝑯 = 𝟓𝟏𝟐
[GFLOP/s]

𝑵 = 𝟏𝟐𝟖,𝑯 = 𝟓𝟏𝟐
[GFLOP/s]

𝑵 = 𝟏𝟐𝟖,𝑯 = 𝟏𝟎𝟐𝟒
[GFLOP/s]

Basic Implementation 350 700 1,550

+ GEMM Weight Fusion 650 1,200 2,900

+ GEMM Timestep Fusion 800 1,450 3,150

+ Element-Wise Fusion 1,600 2,600 4,250

N = batch size

H = hidden dim

x(t)

h(t)
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symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) =  s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x  @ W1 + past_value(h1) + b1)

h2(t) =  s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) =  softmax(Wout h2(t) + bout) P  = softmax(h2 @ Wout + bout)

ce(t) =  LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) =   max

 no explicit notion of time
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symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) =  s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2(t) =  s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P(t) =  softmax(Wout h2(t) + bout) P  = softmax(h2 @ Wout + bout)

ce(t) =  LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) =   max
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symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) =  s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2(t) =  s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P(t) =  softmax(Wout h2(t) + bout) P  = softmax(h2 @ Wout + bout)

ce(t) =  LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) =   max

compare to id (Irvine Dataflow):
[Arvind et al., TR114a, Dept ISC, UC Irvine, Dec 1978; “Executing a Program on the
MIT Tagged-Token Dataflow Architecture”, 1988]

@Function
def ip(a: Sequence[tensor], b: Sequence[tensor]):

s0 = 0
s_ = ForwardDeclaration()
s = past_value(s_, initial_value=s0) + a * b
s_.resolve_to(s)
s = last(s)
return s
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•

+

s

•

+

softmax

W1

b1

Wout

bout

cross_entropy

h1

P

x y

ce

h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P  = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, L)

• CNTK automatically unrolls cycles at execution time
• cycles are detected with Tarjan’s algorithm

• only nodes in cycles

• efficient and composable
• cf. TensorFlow: [https://www.tensorflow.org/versions/r1.0/tutorials/recurrent/index.html]

lstm = rnn_cell.BasicLSTMCell(lstm_size)
state = tf.zeros([batch_size, lstm.state_size]
probabilities = []
loss = 0.0
for current_batch_of_words in words_in_dataset:

output, state = lstm(current_batch_of_words, state)
logits = tf.matmul(output, softmax_w) + softmax_b
probabilities.append(tf.nn.softmax(logits))
loss += loss_function(probabilities, target_words)

+ •

R1

z-1

•

+

s

W2

b2

h2

+ •

R2

z-1

symbolic loops over sequential databoliol
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• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batch-scheduling of variable-length sequences

p
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time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 3
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sequence 7
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• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batch-scheduling of variable-length sequences
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time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7schedule into the same slot, it may come for free!
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• minibatches containing sequences of different lengths are automatically 
packed and padded

• fully transparent batching
• recurrent  CNTK unrolls, handles sequence boundaries

• non-recurrent operations  parallel

• sequence reductions  mask

batch-scheduling of variable-length sequences
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padding
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• degrees of parallelism:
• within-vector parallelization: “vectorized”

• across independent samples: “batching”

• across GPUs: async PCIe device-to-device transfers

• across servers: MPI etc., NVidia NCCL

• parallelization options:
• data-parallel

• model-parallel

• layer-parallel

data-parallel training
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• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

all-reduce

data-parallel training

node 1 node 2 node 3

S
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• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

ring algorithm
O(2 (K-1)/K M)

 O(1) w.r.t. K
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• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

• O(1) — enough?

• example: DNN, MB size 1024, 160M model parameters

• compute per MB:            1/7 second

• communication per MB:  1/9 second (640M over 6 GB/s)

• can’t even parallelize to 2 GPUs: communication cost already dominates!

• how about doing it asynchronously?

• HogWild! [-], DistBelief ASGD [Dean et al., 2012]

• does not change the problem fundamentally

• (but helps with latency and jitter)

data-parallel training
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node 1 node 2 node 3

how to reduce communication cost:

communicate less each time

• 1-bit SGD:
[F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...
Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

1-bit quantized with residual

1-bit quantized with residual

data-parallel training
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how to reduce communication cost:

communicate less each time

• 1-bit SGD:
[F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...
Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

• alternative: 3-level quantization (with residual)
[Nikko Ström: “Scalable Distributed DNN Training Using Commodity GPU Cloud Computing”, Interspeech 2015]

• most gradients are close to 0

• using 3 levels allows very good data compression

• very sparse: all-reduce  all-to-all

data-parallel training
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how to reduce communication cost:

communicate less each time

• 1-bit SGD:  [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

communicate less often

• automatic MB sizing    [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “ON Parallelizability of Stochastic Gradient Descent...”, ICASSP 2014]

• block momentum         [K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training…,” ICASSP 2016]

• very recent, very effective parallelization method

• combines model averaging with error-residual idea

data-parallel training
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data-parallel training

[Yongqiang Wang, IPG; internal communication]



I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion



Microsoft

Cognitive

Toolkit

how CNTK addresses the two key questions:

• how to author neural networks?
• functional programming paradigm, well-matching the nature of DNNs

• focus on what, not how

• familiar syntax and flexibility through EDSL on Python

• transparent automatic differentiation (expression graph: “implementation detail”)

• how to execute them efficiently?
• turn graph into parallel program through minibatching

• symbolic loops over sequences with dynamic scheduling

• unique parallel training algorithms (1-bit SGD, Block Momentum)
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• flexibility vs. efficiency trade-off still not satisfactorily solved

• representational power of DNNs not complete

• YES: logic & state machines

• YES: simple data structures (tensors, sequences)

• NO: structured data (composites/aggregates, references, symbolic knowledge, data bases)

• data scarcity  libraries

• pre-trained neural networks

• world knowledge

challenges going forward



Microsoft

Cognitive

Toolkit

• deep neural networks are a new paradigm of creating programs

• NNs and differentiable computing should be 1st-class citizens in PL and architectures, 

maximizing expressiveness and efficiency

• CNTK is guided by this

• deep neural networks touch upon many classic CS problems

• auto-diff, PL, optimization, hybrid architectures, parallelization (GPU/farms), big data

• often requires some change to DNN algorithms

• looking forward to many great contributions from these three communities!

conclusion
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• Web site: https://cntk.ai/

• Github: https://github.com/Microsoft/CNTK

• Wiki: https://github.com/Microsoft/CNTK/wiki

• Issues: https://github.com/Microsoft/CNTK/issues

mailto:fseide@microsoft.com

Cognitive Toolkit: democratizing the AI tool chain




