
fseide@microsoft.com

With many contributors:

A. Agarwal, E. Akchurin, C. Basoglu, B. Bozza, G. Chen, S. Cyphers, W. Darling, J. Droppo, A. Eversole, B. Guenter, M. Hillebrand, X.-D. Huang, Z. Huang, W. Richert, R. Hoens, V. Ivanov, A.

Kamenev, N. Karampatziakis, P. Kranen, O. Kuchaiev, W. Manousek, C. Marschner, A. May, B. Mitra, O. Nano, G. Navarro, A. Orlov, P. Parthasarathi, B. Peng, M. Radmilac, A. Reznichenko,

W. Richert, M. Seltzer, M. Slaney, A. Stolcke, T. Will, H. Wang, W. Xiong, K. Yao, D. Yu, Y. Zhang, G. Zweig, and many more

Special acknowledgment to Dong Yu, Jasha Droppo, John Langford, Jacob Devlin, Sean McDirmid (Y-Combinator Research), Bruno Bozza

Microsoft

Cognitive

Toolkit

deep learning at Microsoft

• Microsoft Cognitive Services

• Skype Translator

• Cortana

• Bing

• HoloLens

• Microsoft Research

Microsoft

Cognitive

Toolkit

ImageNet: Microsoft 2015 ResNet

28.2
25.8

16.4

11.7

7.3 6.7
3.5

ILSVRC
2010 NEC
America

ILSVRC
2011 Xerox

ILSVRC
2012

AlexNet

ILSVRC
2013 Clarifi

ILSVRC
2014 VGG

ILSVRC
2014

GoogleNet

ILSVRC
2015 ResNet

ImageNet Classification top-5 error (%)

Microsoft had all 5 entries being the 1-st places this year: ImageNet classification,

ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation

Microsoft

Cognitive

Toolkit

Microsoft

Cognitive

Toolkit

deep learning at Microsoft

• Microsoft Cognitive Services

• Skype Translator

• Cortana

• Bing

• HoloLens

• Microsoft Research

Microsoft

Cognitive

Toolkit

24%

14%

Microsoft

Cognitive

Toolkit

Microsoft’s historic
speech breakthrough

• Microsoft 2016 research system for

conversational speech recognition

• 5.9% word-error rate

• enabled by CNTK’s multi-server scalability

[W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,

D. Yu, G. Zweig: “Achieving Human Parity in Conversational

Speech Recognition,” https://arxiv.org/abs/1610.05256]

Youtube Link

https://www.youtube.com/watch?v=eu9kMIeS0wQ;start=70

I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion

Microsoft

Cognitive

Toolkit

• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w [Perceptron, Rosenblatt 1957]

deep neural networks in a single slide

w4

w2

w1

w3

x1
x2

x3

x4

h

sum: Sj wj ∙ xj

saturate: s

example saturation:

sigmoid function

[images from Wikipedia]

Microsoft

Cognitive

Toolkit

• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

W x = x = x

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

()
w11, w12, ..w1N

w21, w22, ..w2N

…

wM1, wM2, ..wMN

()
pattern1

pattern2

…

patternN

e.g. 2000

neurons

correlate

with patterns

Microsoft

Cognitive

Toolkit

• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1))

h(2) = s(W(2) h(1) + b(2))

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

()
pattern1

pattern2

…

patternN

W(1) =

abstract pattern1

abstract pattern2

…

abstract patternN

()W(2) =

Microsoft

Cognitive

Toolkit

• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1))

h(2) = s(W(2) h(1) + b(2))

• connectivity can be local (spatial receptive fields)

h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

Microsoft

Cognitive

Toolkit

• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1))

h(2) = s(W(2) h(1) + b(2))

• connectivity can be local (spatial receptive fields)

h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• can form feedback loops

h(t) = s(W x(t) + R h(t-1) + b)

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

RNN
block

delay

x(t)

h(t)

CLK

Microsoft

Cognitive

Toolkit

• neurons are simple pattern detectors, measure how well

inputs xj correlate with synaptic weights w

hi = s(Sj wij ∙ xj + bi)

• operate as collections, or vectors

h = s(W x + b)

• arranged in layers  increasingly abstract representation

h(1) = s(W(1) x(1) + b(1))

h(2) = s(W(2) h(1) + b(2))

• connectivity can be local (spatial receptive fields)

h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• can form feedback loops

h(t) = s(W x(t) + R h(t-1) + b)

deep neural networks in a single slide

wi4

wi2

wi1

wi3

x1
x2

x3

x4

hi

sum: Sj wj ∙ xj

saturate: s

RNN
block

delay

x(t)

h(t)

CLK

deep

neural

network

convolutional

recurrent

fully connected

Microsoft

Cognitive

Toolkit

• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership,” where

the N classes overlap and are whatever the training process found

fully connected (FCN), convolutional (CNN), recurrent (RNN)

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

h1

h2

P

x

Microsoft

Cognitive

Toolkit

• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership,” where

the N classes overlap and are whatever the training process found

• is something with a sharp increase of higher-frequency broadband noise

• is something with a broad spectral peak at 820 Hz

• is something with broadly low energy

• is something with a spectral peak at 1 kHz moving up

• …

fully connected (FCN), convolutional (CNN), recurrent (RNN)

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

h1

h2

P

x

Microsoft

Cognitive

Toolkit

• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership.”

• convolutional (CNN) h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• repeatedly applies a little FCN over images or other repetitive structures

fully connected (FCN), convolutional (CNN), recurrent (RNN)

Microsoft

Cognitive

Toolkit

• fully connected (FCN) h = s(W x + b)

• describes objects through probabilities of “class membership.”

• convolutional (CNN) h(c,r) = s(W x(c-Dc..c+Dc,r-Dr..r+Dr) + b)

• repeatedly applies a little FCN over images or other repetitive structures

• recurrent (RNN) h(t) = s(W x(t) + R h(t-1) + b)

• repeatedly applies a FCN over a sequence, using its own previous output

fully connected (FCN), convolutional (CNN), recurrent (RNN)

Microsoft

Cognitive

Toolkit

• fully connected (FCN) map

• describes objects through probabilities of “class membership.”

• convolutional (CNN) windowed >> map FIR filter

• repeatedly applies a little FCN over images or other repetitive structures

• recurrent (RNN) scanl, foldl, unfold IIR filter

• repeatedly applies a FCN over a sequence, using its own previous output

• most interesting applications are composite functions of these, e.g.:
• translation: RNN encoder (fold) + RNN decoder (unfold) + beam search [Sutskever et al., 2014]

• image captioning: CNN stack + FCN classifier + text generator [Fang et al., 2015]

• Generative Adversarial Nets: inverted CNN stack trying to fool a CNN stack [Goodfellow et al., 2015]

• Neural Turing machines: multiple RNNs learn algorithms from data [Graves et al., 2015]

fully connected (FCN), convolutional (CNN), recurrent (RNN)

Microsoft

Cognitive

Toolkit

illustration: Conway’s game of life, hand-crafted

[https://en.wikipedia.org/wiki/Conway's_Game_of_Life]

Microsoft

Cognitive

Toolkit

-1
-1

-1,-1,-1,-1,-1,-1,-1,-1,-1 -1
-1,-1,-1,-1,-1,-1,-1,-1,+1 -1
-1,-1,-1,-1,-1,-1,-1,+1,-1 -1
... +1
+1,+1,+1,+1,+1,+1,+1,+1,+1 +1

-1
+1

()()• create a 2-layer FCN that implements the propagation rules

• Layer 1:

• represent the 9 bits as a 9-dim vector of {-1, +1}

• W(1) enumerates all 512 input patterns, threshold for “all match”

h(1) = r(W(1) x + b) ; b = –8; r(z) = max(z,0)

• Layer 2:

• W(2) enumerates output values of truth table: (0, 0, 0, 1, ..., 1, ..., 0)

h(2) = s(W(2) h(1) + b) ; b = – 0.5 ; s(z) = sgn(z)

• apply independently to every pixel position to perform one step  CNN

• unfold this over time  RNN

• game of life is a universal Turing machine

 so are deep recurrent networks

illustration: Conway’s game of life, hand-crafted

[https://en.wikipedia.org/wiki/Conway's_Game_of_Life]

Microsoft

Cognitive

Toolkit

• training

• find weight parameters (W(n), b(n)) as to match some criterion function

• supervised learning  classify an input

• unsupervised learning  discover hidden structure in data

• reinforcement learning  interact with an environment to maximize reward

• stochastic gradient descent (SGD)

• feed input sample, compare to desired output

• iteratively take a step in the direction of the gradient of the criterion function w.r.t. a weight parameter

• gradients are computed through automatic differentiation

• SGD training is VERY expensive

• speech: 100M MACs/sample, 3.6B samples, 3 passes, fw+bw  1018 MACs

• image: 4.4B MACs/sample, 1.2M samples, 120 passes , fw+bw  1019 MACs

• Titan X GPU (3840 CUDA cores): peak 3.5 1012 MACs/s  1+ weeks

training deep neural networks with SGD

CNTK / OpenAI Gym

[Morgan Funtowicz]

Microsoft

Cognitive

Toolkit

deep-learning toolkits must address two questions:

• how to author neural networks?  user’s job

• how to execute them efficiently? (training/test)  tool’s job!!

I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion

Microsoft

Cognitive

Toolkit

• CNTK is a library for deep neural networks
• model definition

• scalable training

• efficient I/O

• makes it easy to author, train, and use neural networks
• think “what” not “how”

• focus on composability

• functional-style EDSL on top of Python on top of C++ API/library

• open source since 2015 https://github.com/Microsoft/CNTK

• created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit”

• contributions from MS product groups and external (e.g. MIT, Stanford), development is visible on Github

• Linux, Windows, docker, cudnn5, CUDA 8

Microsoft Cognitive Toolkit, CNTK

Microsoft

Cognitive

Toolkit

from cntk import *

reader
def create_reader(path, is_training):

...

network
def create_model_function():

...
def create_criterion_function(model):

...

trainer (and evaluator)
def train(reader, model):

...
def evaluate(reader, model):

...

main function
model = create_model_function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

Microsoft Cognitive Toolkit, CNTK

Microsoft

Cognitive

Toolkit

Microsoft Cognitive Toolkit, CNTK

I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion

Microsoft

Cognitive

Toolkit

expression-graph representation of neural networks

example: 2-hidden layer feed-forward NN

h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1)

h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2)

P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout)

with input x  RM and one-hot label y  RJ

and cross-entropy training criterion

ce = yT log P ce = cross_entropy (P, y)

Scorpusce = max

Microsoft

Cognitive

Toolkit

expression-graph representation of neural networks

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

h1 = sigmoid (x @ W1 + b1)

h2 = sigmoid (h1 @ W2 + b2)

P = softmax (h2 @ Wout + bout)

ce = cross_entropy (P, y)

ce

expression tree with

• primitive ops

• values (tensors)

• composite ops

Microsoft

Cognitive

Toolkit

expression-graph representation of neural networks

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

ce

why the expression-graph detour?

• automatic differentiation!!
• chain rule: ∂F / ∂in = ∂F / ∂out ∙ ∂out / ∂in

• run graph backwards

 “back propagation”

Microsoft

Cognitive

Toolkit

expression graphs vs. imperative Python
code

• Theano, TensorFlow:
• expression graph is user surface; user builds the graph

• Python functions are just code-generation macros; one “programs at a distance” [John

Launchbury]

• referential transparency problem, e.g. what does this really mean? [Bruno Bozza]

y = tf.contrib.layers.fully_connected(x, num_outputs=512, scope=variable_scope)

 graph is too low an abstraction level, implementation detail

• Chainer, DyNet:
• imperative computation, also builds a graph for back prop only

• re-done for each input  can implement arbitrary algorithms in any coding style

• but control flow opaque to toolkit  parallelization (batching) left to user

 imperative execution is too high an abstraction level for optimization

Microsoft

Cognitive

Toolkit

authoring networks as functions

• CNTK model: neural networks are functions, and reasoned about as such
• pure functions (cannot modify state)

• with “special powers”:
• can compute a gradient w.r.t. any of its nodes

• external deity can update model parameters (but think creating a new function from an old one)

• user specifies network as function objects:
• formula as a Python function (low level, e.g. LSTM)

• function composition of smaller sub-networks (layering)

• higher-order functions (equiv. of scan, fold, unfold)

• model parameters owned (closed over) by the function objects  solves referential transparency

• “compiled” into the static execution graph under the hood

Microsoft

Cognitive

Toolkit

• “model function”
• features predictions

• defines the model structure & parameter initialization

• holds parameters that will be learned by training

• “criterion function”
• (features, labels)  (training loss, additional metrics)

• defines training and evaluation criteria on top of the model function

• provides gradients w.r.t. training criteria

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

ce

Microsoft

Cognitive

Toolkit

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

--- graph building ---

M = 40 ; H = 512 ; J = 9000 # feat/hid/out dim

define learnable parameters

W1 = Parameter((M,H)); b1 = Parameter(H)

W2 = Parameter((H,H)); b2 = Parameter(H)

Wout = Parameter((H,J)); bout = Parameter(J)

build the graph

x = Input(M) ; y = Input(J) # feat/labels

h1 = sigmoid(x @ W1 + b1)

h2 = sigmoid(h1 @ W2 + b2)

P = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, y)

ce

Microsoft

Cognitive

Toolkit

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

--- graph building with function objects ---

M = 40 ; H = 512 ; J = 9000 # feat/hid/out dim

- function objects own the learnable parameters

- here used as blocks in graph building

x = Input(M) ; y = Input(J) # feat/labels

h1 = Dense(H, activation=sigmoid)(x)

h2 = Dense(H, activation=sigmoid)(h1)

P = Dense(J, activation=softmax)(h2)

ce = cross_entropy(P, y)

ce

Microsoft

Cognitive

Toolkit

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

M = 40 ; H = 512 ; J = 9000 # feat/hid/out dim

function composition

model = (Dense(H, activation=sigmoid) >>

Dense(H, activation=sigmoid) >>

Dense(J, activation=softmax))

criterion as function, invokes model function

@Function

def crit(x: Tensor[M], y: Tensor[J]):

P = model(x)

return cross_entropy(P, y)

function is passed to trainer

tr = Trainer(crit, Learner(model.parameters), …)

ce

Microsoft

Cognitive

Toolkit

authoring networks as functions

enables higher-order functions:

• forward composition:

model = Dense(H, activation=sigmoid) >> Dense(H, activation=sigmoid) >> Dense(J)

• recurrence (scanl/foldl):

model = (Embedding(emb_dim, name='embed') >>
Recurrence(RNNUnit(hidden_dim)) >> # == scanl over recurrent block
Dense(num_labels, name='out_projection'))

• unfold:

model = UnfoldFrom(lambda history: s2smodel(history, input) >> hardmax,
until_predicate=lambda w: w[...,sentence_end_index],
length_increase=length_increase)

output = model(START_SYMBOL)

Microsoft

Cognitive

Toolkit

Layers lib: full list of layers/blocks
• layers/blocks.py:

• LSTM(), GRU(), RNNUnit()
• Stabilizer(), identity
• ForwardDeclaration(), Tensor[], SparseTensor[], Sequence[], SequenceOver[]

• layers/layers.py:
• Dense(), Embedding()
• Convolution(), Convolution1D(), Convolution2D(), Convolution3D(), Deconvolution()
• MaxPooling(), AveragePooling(), GlobalMaxPooling(), GlobalAveragePooling(), MaxUnpooling()
• BatchNormalization(), LayerNormalization()
• Dropout(), Activation()
• Label()

• layers/higher_order_layers.py:
• Sequential(), For(), operator >>, (function tuples)
• ResNetBlock(), SequentialClique()

• layers/sequence.py:
• Delay(), PastValueWindow()
• Recurrence(), RecurrenceFrom(), Fold(), UnfoldFrom()

• models/models.py:
• AttentionModel()

I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion

Microsoft

Cognitive

Toolkit

high performance with GPUs

• after being stuck for decades, GPUs made NN
research and experimentation productive

• must turn DNNs into parallel programs

• two main priorities in GPU computing:

1. make sure all CUDA cores are always busy
• Titan X: 3072 parallel processors, so single threaded code would

only get 1/3072 = 0.03% of peak performance

2. read from GPU RAM as little as possible
• reading a float and using it once = 4 bytes for 1 operation

= 288 GB/sec * ¼ GFLOP/GB = 72 GFLOP/sec peak = 72/7000
= 1% utilization

• even if you use all CUDA cores!

[Jacob Devlin, NLPCC 2016 Tutorial]

Microsoft

Cognitive

Toolkit

parallel programs through minibatching

• minibatching := batch N samples, e.g. N=256; execute in lockstep
• turns N matrix-vector products into

one matrix-matrix product

• cuBLAS gets close to peak performance

• benefits element-wise ops and reductions, too

• key enabler

• limits:
• convergence

• cross-sample dependencies (recurrent nets)

• memory size

• difficult to get right
 CNTK makes batching fully transparent

Microsoft

Cognitive

Toolkit

improved parallelism through operation fusion
[Jacob Devlin, Efficient Training and Deployment of Large Scale Deep Learning Systems for NLP, NLPCC 2016]

• example “gated recurrent unit” (GRU), a popular recurrent unit

u(t) = s(Wu x(t) + Ru h(t-1) + bu) 6 matrix-vector multiplications
r(t) = s(Wr x(t) + Rr h(t-1) + br) 14 element-wise functions
c(t) = tanh(Wc x(t) + ri ⨀ (Rc h(t-1)) + bc)
h(t) = (1-u(t)) ⨀ h(t-1) + u(t) ⨀ c(t)

• operation fusion:
• combine matrix products: stack (Ru, Rr, Rc) and (Wu, Wr, Wc)  better core use

• pull products with x(t) outside the loop  single launch

• combine element-wise operations  avoid memory round trips

Model 𝑵 = 𝟔𝟒,𝑯 = 𝟓𝟏𝟐
[GFLOP/s]

𝑵 = 𝟏𝟐𝟖,𝑯 = 𝟓𝟏𝟐
[GFLOP/s]

𝑵 = 𝟏𝟐𝟖,𝑯 = 𝟏𝟎𝟐𝟒
[GFLOP/s]

Basic Implementation 350 700 1,550

+ GEMM Weight Fusion 650 1,200 2,900

+ GEMM Timestep Fusion 800 1,450 3,150

+ Element-Wise Fusion 1,600 2,600 4,250

N = batch size

H = hidden dim

x(t)

h(t)

I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion

Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) = s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) + b1)

h2(t) = s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout)

ce(t) = LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) = max

 no explicit notion of time

Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) = s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1)

h2(t) = s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout)

ce(t) = LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) = max

Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) = s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1)

h2(t) = s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout)

ce(t) = LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) = max

compare to id (Irvine Dataflow):
[Arvind et al., TR114a, Dept ISC, UC Irvine, Dec 1978; “Executing a Program on the
MIT Tagged-Token Dataflow Architecture”, 1988]

@Function
def ip(a: Sequence[tensor], b: Sequence[tensor]):

s0 = 0
s_ = ForwardDeclaration()
s = past_value(s_, initial_value=s0) + a * b
s_.resolve_to(s)
s = last(s)
return s

Microsoft

Cognitive

Toolkit

•

+

s

•

+

softmax

W1

b1

Wout

bout

cross_entropy

h1

P

x y

ce

h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1)

h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, L)

• CNTK automatically unrolls cycles at execution time
• cycles are detected with Tarjan’s algorithm

• only nodes in cycles

• efficient and composable
• cf. TensorFlow: [https://www.tensorflow.org/versions/r1.0/tutorials/recurrent/index.html]

lstm = rnn_cell.BasicLSTMCell(lstm_size)
state = tf.zeros([batch_size, lstm.state_size]
probabilities = []
loss = 0.0
for current_batch_of_words in words_in_dataset:

output, state = lstm(current_batch_of_words, state)
logits = tf.matmul(output, softmax_w) + softmax_b
probabilities.append(tf.nn.softmax(logits))
loss += loss_function(probabilities, target_words)

+ •

R1

z-1

•

+

s

W2

b2

h2

+ •

R2

z-1

symbolic loops over sequential databoliol

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batch-scheduling of variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 3

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batch-scheduling of variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7schedule into the same slot, it may come for free!

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• fully transparent batching
• recurrent  CNTK unrolls, handles sequence boundaries

• non-recurrent operations  parallel

• sequence reductions  mask

batch-scheduling of variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion

Microsoft

Cognitive

Toolkit

• degrees of parallelism:
• within-vector parallelization: “vectorized”

• across independent samples: “batching”

• across GPUs: async PCIe device-to-device transfers

• across servers: MPI etc., NVidia NCCL

• parallelization options:
• data-parallel

• model-parallel

• layer-parallel

data-parallel training

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

all-reduce

data-parallel training

node 1 node 2 node 3

S

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

ring algorithm
O(2 (K-1)/K M)

 O(1) w.r.t. K

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

• O(1) — enough?

• example: DNN, MB size 1024, 160M model parameters

• compute per MB:  1/7 second

• communication per MB:  1/9 second (640M over 6 GB/s)

• can’t even parallelize to 2 GPUs: communication cost already dominates!

• how about doing it asynchronously?

• HogWild! [-], DistBelief ASGD [Dean et al., 2012]

• does not change the problem fundamentally

• (but helps with latency and jitter)

data-parallel training

Microsoft

Cognitive

Toolkit

node 1 node 2 node 3

how to reduce communication cost:

communicate less each time

• 1-bit SGD:
[F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...
Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

1-bit quantized with residual

1-bit quantized with residual

data-parallel training

Microsoft

Cognitive

Toolkit

how to reduce communication cost:

communicate less each time

• 1-bit SGD:
[F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...
Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

• alternative: 3-level quantization (with residual)
[Nikko Ström: “Scalable Distributed DNN Training Using Commodity GPU Cloud Computing”, Interspeech 2015]

• most gradients are close to 0

• using 3 levels allows very good data compression

• very sparse: all-reduce  all-to-all

data-parallel training

Microsoft

Cognitive

Toolkit

how to reduce communication cost:

communicate less each time

• 1-bit SGD: [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

communicate less often

• automatic MB sizing [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “ON Parallelizability of Stochastic Gradient Descent...”, ICASSP 2014]

• block momentum [K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training…,” ICASSP 2016]

• very recent, very effective parallelization method

• combines model averaging with error-residual idea

data-parallel training

Microsoft

Cognitive

Toolkit

data-parallel training

[Yongqiang Wang, IPG; internal communication]

I. deep neural networks crash course
II. Microsoft Cognitive Toolkit (CNTK)
III. authoring neural networks
IV. executing neural networks

-- GPU execution
-- optimization
-- parallelization

V. conclusion

Microsoft

Cognitive

Toolkit

how CNTK addresses the two key questions:

• how to author neural networks?
• functional programming paradigm, well-matching the nature of DNNs

• focus on what, not how

• familiar syntax and flexibility through EDSL on Python

• transparent automatic differentiation (expression graph: “implementation detail”)

• how to execute them efficiently?
• turn graph into parallel program through minibatching

• symbolic loops over sequences with dynamic scheduling

• unique parallel training algorithms (1-bit SGD, Block Momentum)

Microsoft

Cognitive

Toolkit

• flexibility vs. efficiency trade-off still not satisfactorily solved

• representational power of DNNs not complete

• YES: logic & state machines

• YES: simple data structures (tensors, sequences)

• NO: structured data (composites/aggregates, references, symbolic knowledge, data bases)

• data scarcity  libraries

• pre-trained neural networks

• world knowledge

challenges going forward

Microsoft

Cognitive

Toolkit

• deep neural networks are a new paradigm of creating programs

• NNs and differentiable computing should be 1st-class citizens in PL and architectures,

maximizing expressiveness and efficiency

• CNTK is guided by this

• deep neural networks touch upon many classic CS problems

• auto-diff, PL, optimization, hybrid architectures, parallelization (GPU/farms), big data

• often requires some change to DNN algorithms

• looking forward to many great contributions from these three communities!

conclusion

Microsoft

Cognitive

Toolkit

• Web site: https://cntk.ai/

• Github: https://github.com/Microsoft/CNTK

• Wiki: https://github.com/Microsoft/CNTK/wiki

• Issues: https://github.com/Microsoft/CNTK/issues

mailto:fseide@microsoft.com

Cognitive Toolkit: democratizing the AI tool chain

