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Goal

Design an efficient algorithm for Outlier Robust PCA

PCA and its Brittleness

Given data matrix X∗ = {x1, x2, . . . , xn}, compute the rank-r subspace that best
descries the data:

U = arg min
U∈Rd×r

∥∥∥(I − UU>)X∗
∥∥∥
F

However, PCA is extremely brittle to the presence of outliers.
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Question

Given sparsely-corrupted data matrix M∗ = X∗ + C∗, recover PCA(X∗).

Figure: Data Points with Corruptions

Existing Work

Existing work suffer from high computational cost and weak recovery guarantees.

Therefore, is there an estimator which can:
1 Match the running time of Vanilla PCA and
2 Obtain strong recovery guarantees?

Algorithm - TORP

Algorithm 1 TORP
Input: M, r, ρ, T
Initialize CS ← {}
for t = 0 to t = T do
[U,Σ, V ]← SVDr(M\CS)
ei←

∥∥∥Σ−1U>Mi

∥∥∥
ri←

∥∥∥(I − UU>)Mi

∥∥∥
CS ← {Top ρn ei}∪{Top ρn ri}
end for
[U,Σ, V ]← SVDr(M\CS)
Return: U
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Three Settings

Recall that we are givenM∗ = X∗+C∗. Let X∗ = L∗+N∗ where L∗ is the rank-r
approximation of X∗. We consider three settings based on our assumptions on N∗:

•Noiseless Setting: N∗ = 0,
•General Noise Setting: N∗ is arbitrary,
•Gaussian Noise: N∗ is Gaussian.
We also assume to ensure uniqueness of the decomposition:
•L∗ is µ-incoherent, i.e [U∗,Σ∗, V ∗] = SVD(L∗) with

∥∥∥e>i V ∗∥∥∥ ≤ µ
√
r/
√
n.

•Fraction of corruptions, γ satisfies γ ≤ O
(

1
µ2r

)
.

Noiseless Case

Theorem

TORP run with ρ = 1
128µ2r and T = log 20‖M∗‖n

ε , returns U satisfying:∥∥∥PU⊥(L∗)
∥∥∥
F
≤ ε

in at most O(ndr log 1
ε) computational steps.

•Exact recovery of the principal components.
•Time complexity almost matches that of Vanilla PCA.
• [Xu et al, 2010] match the recovery guarantee but have large runtime

(
O
(
n2d
ε2

))
while [Xu et al, 2013] cannot obtain exact recovery guarantees.

General Noise Case

We, now, allow the noise matrix N∗ to be arbitrary.

Theorem

TORP run with ρ = 1
128µ2r and T = log 20‖M∗‖n

ε , returns U satisfying:∥∥∥PU⊥(L∗)
∥∥∥
F
≤ 60
√
r ‖N∗‖F + ε

in at most O
(
ndr log 1

ε

)
computational steps.

•Recovery guarantee optimal upto a factor of O(
√
r).

• [Xu et al, 2010] obtain recovery upto O(
√
n ‖N∗‖F ).

Gaussian Noise Case

Improved recovery guarantees can be obtained in special cases.
When each column i ∈ [n] satisfies N∗i ∼ N (0, σId), we obtain:

Theorem
TORP-G returns U satisfying:∥∥∥PU⊥(L∗)

∥∥∥
F
≤ 9

√
r log d ‖N∗‖2 + ε

w.h.p when n = Ω(d2) in at most O(n2dr log 1
ε) computational steps.

•O(
√
d) improvement over TORP and O(

√
nd) over [Xu et al, 2010].

•Computational cost: O(n2dr), Sample complexity: Ω(d2).
•Also holds when N∗i obeys a Sub-Gaussian distribution with parameter σ.


