forked from LZU-SIAT/PCRP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loaderPC.py
448 lines (318 loc) · 12.9 KB
/
data_loaderPC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
from torch.utils.data import Dataset, DataLoader,SubsetRandomSampler
from torch.nn.utils.rnn import pad_packed_sequence, pad_sequence, pack_padded_sequence
import random
import torch
import h5py
import numpy as np
import pickle
import os
import glob
import pandas as pd
def get_data_list(data_path):
f = h5py.File(data_path, 'r')
data_list = []
label_list = []
for i in range(len(f['label'])):
if np.shape(f[str(i)][:])[0] > 10:
x = f[str(i)][:]
# original matrix with probability
y = f['label'][i]
x = torch.tensor(x, dtype=torch.float)
data_list.append(x)
label_list.append(y)
return data_list, label_list
# def get_data_list_ntu(data_path):
# data_list = []
# label_list = []
# with open(data_path, "rb") as fin:
# data_src = pickle.load(fin)
# for data in data_src:
# data_list.append(torch.tensor(data['input'], dtype=torch.float)) # T, 75
# label_list.append(data['label'])
# return data_list, label_list
def concate_data(data_path, seq_len = 10):
data_list, label_list = get_data_list(data_path)
feature_len = data_list[0].size()[-1]
data = torch.tensor(())
for i in range(len(label_list)):
if data_list[i].size()[0] == seq_len:
tmp = troch.flatten(data_list[i])
data = torch.cat((data, tmp)).unsqueeze(0)
if data_list[i].size()[0] < seq_len:
dif = seq_len - data_list.size()[0]
tmp = torch.cat((data_list[i], torch.zeros((dif, feature_len))))
tmp = torch.flatten(tmp)
data = torch.cat((data, tmp)).unsqueeze(0)
if data_list[i].size()[0] > seq_len:
tmp = data_list[i][:seq_len,:]
tmp = torch.flatten(tmp).unsqueeze(0)
data = torch.cat((data, tmp))
label_list = np.asarray(label_list)
return data.numpy(), label_lists
def pad_collate(batch):
lens = [len(x[0]) for x in batch]
data = [x[0] for x in batch]
label = [x[1]-1 for x in batch]
label = np.asarray(label)
index = [x[2] for x in batch]
index = np.asarray(index)
# print(type(data))
xx_pad = pad_sequence(data, batch_first=True, padding_value=0)
return xx_pad, lens, label, index
def pad_collate_ntu(batch):
data = [x[0] for x in batch]
lens = [x[1] for x in batch]
label = [x[2] for x in batch]
label = np.asarray(label)
index = [x[3] for x in batch]
index = np.asarray(index)
xx_pad = pad_sequence(data, batch_first=True, padding_value=0)
return xx_pad, lens, label, index
class MyAutoDataset(Dataset):
def __init__(self, data, label):
self.data = data
self.label = label
#self.xy = zip(self.data, self.label)
def __getitem__(self, index):
sequence = self.data[index, :]
label = self.label[index]
# Transform it to Tensor
#x = torchvision.transforms.functional.to_tensor(sequence)
#x = torch.tensor(sequence, dtype=torch.float)
#y = torch.tensor([self.label[index]], dtype=torch.int)
return sequence, label
def __len__(self):
return len(self.label)
class MyDataset(Dataset):
def __init__(self, data_path):
self.data, self.label = get_data_list(data_path)
# label = np.asarray(self.label)
# train_index = np.zeros(len(self.label))
def __getitem__(self, index):
sequence = self.data[index]
label = self.label[index]
return sequence, label, index
def __len__(self):
return len(self.label)
def downsample(data, target_frame=50):
"""
Downsample input data into number of target frames
:param data:
:param target_frame:
:return:
"""
if len(data) > target_frame:
return data[:target_frame], target_frame
else:
return data, len(data)
class MyDataset_ntu(Dataset):
def __init__(self, data_path, flag):
data_npy = os.path.join(data_path, 'trans_{}_data.npy'.format( flag))
sample_label = os.path.join(data_path, '{}_label.pkl'.format(flag))
sample_len = os.path.join(data_path, '{}_sample_len.pkl'.format(flag))
with open(sample_label, "rb") as fin:
label_list = pickle.load(fin)
with open(sample_len, "rb") as fin:
lens_list = pickle.load(fin)
if 'ntu120' in data_path:
self.data = np.load(data_npy, mmap_mode='r')[:, :, 0:75]
else:
self.data = np.load(data_npy, mmap_mode='r')
self.label_list = label_list
self.lens_list = lens_list
def __getitem__(self, index):
lens = self.lens_list[index]
sequence = torch.tensor(self.data[index][:lens], dtype=torch.float)
sequence, lens = downsample(sequence)
label = self.label_list[index]
return sequence, lens, label, index
def __len__(self):
return len(self.label_list)
class MyDataset_uwa3d(Dataset):
def __init__(self, data_path, flag):
data_npy = os.path.join(data_path, '{}_data.npy'.format(flag))
sample_label = os.path.join(data_path, '{}_label.pkl'.format(flag))
sample_len = os.path.join(data_path, '{}_lens.pkl'.format(flag))
with open(sample_label, "rb") as fin:
label_list = pickle.load(fin)
with open(sample_len, "rb") as fin:
lens_list = pickle.load(fin)
self.data = np.load(data_npy)
self.label_list = label_list
self.lens_list = lens_list
def __getitem__(self, index):
lens = self.lens_list[index]
sequence = torch.tensor(self.data[index][:lens], dtype=torch.float)
sequence, lens = downsample(sequence)
label = self.label_list[index]
return sequence, lens, label, index
def __len__(self):
return len(self.label_list)
# ==================== sbu
SETS = ['s01s02','s01s03','s01s07','s02s01','s02s03','s02s06','s02s07','s03s02',
's03s04','s03s05','s03s06','s04s02','s04s03','s04s06','s05s02','s05s03',
's06s02','s06s03','s06s04','s07s01','s07s03']
FOLDS = [
[ 1, 9, 15, 19],
[ 5, 7, 10, 16],
[ 2, 3, 20, 21],
[ 4, 6, 8, 11],
[12, 13, 14, 17, 18]]
ACTIONS = ['Approaching','Departing','Kicking','Punching','Pushing','Hugging',
'ShakingHands','Exchanging']
def denormalize(norm_coords):
""" SBU denormalization
original_X = 1280 - (normalized_X .* 2560);
original_Y = 960 - (normalized_Y .* 1920);
original_Z = normalized_Z .* 10000 ./ 7.8125;
"""
denorm_coords = np.empty(norm_coords.shape)
denorm_coords[:, 0] = 1280 - (norm_coords[:, 0] * 2560)
denorm_coords[:, 1] = 960 - (norm_coords[:, 1] * 1920)
denorm_coords[:, 2] = norm_coords[:, 1] * 10000 / 7.8125
return denorm_coords
def parse_sbu_txt(pose_filepath, normalized=False):
video_poses_mat = np.loadtxt(pose_filepath, delimiter=',', usecols=range(1, 91))
video_poses = []
for frame_pose in video_poses_mat:
people = []
# 2 persons * 15 joints * 3 dimensions
people_poses = frame_pose.reshape(2, 45)
for person in people_poses:
if normalized:
per = person.reshape(15, 3)
else:
per = denormalize(person.reshape(15, 3))
# per['confs'] = 15 * [1]
people.append(per)
video_poses.append(people)
return np.array(video_poses)
def get_ground_truth(data_dir ):
max_frams = 0
setname_lst, fold_lst, seq_lst, action_lst, path_lst, frames_lst = [], [], [], [], [] ,[]
for set_id, set_name in enumerate(SETS):
for action_id in range(len(ACTIONS)):
search_exp = '{}/{}/{:02}/*'.format(data_dir, set_name, action_id + 1)
paths = glob.glob(search_exp)
paths.sort()
for path in paths:
seq = path.split('/')[-1]
fold = np.argwhere([set_id + 1 in lst for lst in FOLDS])[0, 0]
frames = len(parse_sbu_txt(path + '/skeleton_pos.txt'))
max_frams = max(max_frams, frames)
setname_lst.append(set_name)
fold_lst.append(fold)
seq_lst.append(seq)
action_lst.append(action_id)
path_lst.append(path + '/skeleton_pos.txt')
frames_lst.append(frames)
dataframe_dict = {'set_name': setname_lst,
'fold': fold_lst,
'seq': seq_lst,
'path': path_lst,
'action': action_lst,
'frames': frames_lst
}
ground_truth = pd.DataFrame(dataframe_dict)
return ground_truth, max_frams
def get_train_gt(fold_num, ground_truth):
if fold_num < 0 or fold_num > 5:
raise ValueError("fold_num must be within 0 and 5, value entered: " + str(fold_num))
# ground_truth, _ = get_ground_truth()
gt_split = ground_truth[ground_truth.fold != fold_num]
return gt_split
def get_val_gt(fold_num, ground_truth):
if fold_num < 0 or fold_num > 5:
raise ValueError("fold_num must be within 0 and 5, value entered: " + str(fold_num))
# ground_truth, _ = get_ground_truth()
gt_split = ground_truth[ground_truth.fold == fold_num]
return gt_split
def subtract(data_numpy, target_joint):
T, C, V = data_numpy.shape
x_new = np.zeros((T, C, V ))
for i in range(V):
x_new[:, :, i] = data_numpy[:, :, i] - data_numpy[:, :, target_joint]
return x_new
def subtract_torch(data, target_joint):
T, CV = data.size()
x_new = torch.zeros((T, CV ))
for i in range(25):
x_new[:, i : i+3] = data[:, i : i+3] - data[:, target_joint : target_joint + 3]
return x_new
def ntu_tranform_skeleton(test):
"""
:param test: frames of skeleton within a video sample
"""
remove_frame = False
test = np.asarray(test)
transform_test = []
d = test[0,2*3:2*3+3]
v1 = test[0,1*3:1*3+3]-test[0,2*3:2*3+3]
v1 = v1/np.linalg.norm(v1)
v2_ = test[0,9*3:9*3+3]-test[0,12*3:12*3+3]
proj_v2_v1 = np.dot(v1.T,v2_)*v1/np.linalg.norm(v1)
v2 = v2_-np.squeeze(proj_v2_v1)
v2 = v2/np.linalg.norm(v2)
v3 = np.cross(v2,v1)/np.linalg.norm(np.cross(v2,v1))
v1 = np.reshape(v1,(3,1))
v2 = np.reshape(v2,(3,1))
v3 = np.reshape(v3,(3,1))
R = np.hstack([v2,v3,v1])
for i in range(test.shape[0]):
xyzs = []
for j in range(15):
if test[i][j*3:j*3+3].all()==0:
remove_frame = True
break
xyz = np.squeeze(np.matmul(np.linalg.inv(R),np.reshape(test[i][j*3:j*3+3]-d,(3,1))))
xyzs.append(xyz)
if not remove_frame:
xyzs = np.reshape(np.asarray(xyzs),(-1,45))
transform_test.append(xyzs)
else:
remove_frame = False
transform_test = np.squeeze(np.asarray(transform_test))
return transform_test
class MyDataset_sbu(Dataset):
def __init__(self, data_path, fold, train_or_val):
self.root_dir = data_path
self.fold = fold
self.train_or_val = train_or_val
self.all_gt, self.max_frame = get_ground_truth(self.root_dir)
if self.train_or_val == 'train':
self.gt = get_train_gt(self.fold, self.all_gt)
elif self.train_or_val == 'val':
self.gt = get_val_gt(self.fold, self.all_gt)
else:
raise ValueError('no such flag')
# data_npy = os.path.join(data_path, '{}_data.npy'.format(flag))
# sample_label = os.path.join(data_path, '{}_label.pkl'.format(flag))
# sample_len = os.path.join(data_path, '{}_lens.pkl'.format(flag))
# with open(sample_label, "rb") as fin:
# label_list = pickle.load(fin)
# with open(sample_len, "rb") as fin:
# lens_list = pickle.load(fin)
# self.data = np.load(data_npy)
# self.label_list = label_list
# self.lens_list = lens_list
def __len__(self):
return len(self.gt)
def __getitem__(self, index):
raw_data = parse_sbu_txt(self.gt.iloc[index].path)
T, M, V, C = raw_data.shape
raw_data = raw_data.transpose([0, -1, -2, 1]) # T, C, V, M
raw_data = raw_data[:,:,:,0]
raw_data = subtract(raw_data,0 ).reshape([T, -1]) # train loss 1.6w+
# raw_data = ntu_tranform_skeleton(raw_data.reshape([T, -1])) # train loss 2w+
sequence = torch.tensor(raw_data, dtype=torch.float) # C, T, V
sequence, lens = downsample(sequence, 40)
# data_numpy = np.zeros([C, self.max_frame, V, M])
# data_numpy[:, :T , :, :] = raw_data
label = self.gt.iloc[index].action
# lens = self.gt.iloc[index].frames
# ===================
# lens = self.lens_list[index]
# sequence = torch.tensor(self.data[index][:lens], dtype=torch.float)
# sequence, lens = downsample(sequence)
# label = self.label_list[index]
return sequence, lens, label, index