Skip to content

Latest commit

 

History

History

3dhall9

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

3D Hall 9 Click

3D Hall 9 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Filipovic
  • Date : Nov 2021.
  • Type : I2C type

Software Support

Example Description

This example demonstrates the use of 3D Hall 9 Click board by reading the magnetic flux density from 3 axes as well as the angles between axes and the sensor temperature.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.3DHall9

Example Key Functions

  • c3dhall9_cfg_setup Config Object Initialization function.
void c3dhall9_cfg_setup ( c3dhall9_cfg_t *cfg );
  • c3dhall9_init Initialization function.
err_t c3dhall9_init ( c3dhall9_t *ctx, c3dhall9_cfg_t *cfg );
  • c3dhall9_default_cfg Click Default Configuration function.
err_t c3dhall9_default_cfg ( c3dhall9_t *ctx );
  • c3dhall9_write_register This function writes a desired data to the selected register by using I2C serial interface.
err_t c3dhall9_write_register ( c3dhall9_t *ctx, uint8_t reg, uint32_t data_in );
  • c3dhall9_read_register This function reads a desired data from the selected register by using I2C serial interface.
err_t c3dhall9_read_register ( c3dhall9_t *ctx, uint8_t reg, uint32_t *data_out );
  • c3dhall9_read_data This function reads new data which consists of X, Y, and Z axis values in Gauss, and temperature in Celsius. It also calculates the angles between all axes in Degrees based on the raw axes data read.
err_t c3dhall9_read_data ( c3dhall9_t *ctx, c3dhall9_data_t *data_out );

Application Init

Initializes the driver and the Click board.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c3dhall9_cfg_t c3dhall9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    c3dhall9_cfg_setup( &c3dhall9_cfg );
    C3DHALL9_MAP_MIKROBUS( c3dhall9_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == c3dhall9_init( &c3dhall9, &c3dhall9_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( C3DHALL9_ERROR == c3dhall9_default_cfg ( &c3dhall9 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

Application Task

Reads the new data from the sensor approximately every 300ms and displays the measurement values on the USB UART.

void application_task ( void )
{
    c3dhall9_data_t sensor_data;
    
    if ( C3DHALL9_OK == c3dhall9_read_data ( &c3dhall9, &sensor_data ) )
    {
        log_printf( &logger, " X-axis: %.1f Gauss\r\n", sensor_data.x_axis );
        log_printf( &logger, " Y-axis: %.1f Gauss\r\n", sensor_data.y_axis );
        log_printf( &logger, " Z-axis: %.1f Gauss\r\n", sensor_data.z_axis );
        log_printf( &logger, " Angle XY: %.1f Degrees\r\n", sensor_data.angle_xy );
        log_printf( &logger, " Angle XZ: %.1f Degrees\r\n", sensor_data.angle_xz );
        log_printf( &logger, " Angle YZ: %.1f Degrees\r\n", sensor_data.angle_yz );
        log_printf( &logger, " Temperature: %.2f Celsius\r\n\n", sensor_data.temperature );
        Delay_ms ( 300 );
    }
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.