\mainpage Main Page
ADC 19 Click is a compact add-on board that contains a high-performance data converter. This board features the ADC122S101, a low-power two-channel CMOS 12-bit analog-to-digital converter from Texas Instruments. This SPI configurable analog-to-digital converter (ADC) is fully specified over a sample rate range of 500ksps to 1Msps, offering high reliability and performance. The converter is based on a successive-approximation register architecture with an internal track-and-hold circuit configurable to accept one or two input signals at its input channels.
- Author : Stefan Filipovic
- Date : Mar 2022.
- Type : SPI type
We provide a library for the ADC 19 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for ADC 19 Click driver.
adc19_cfg_setup
Config Object Initialization function.
void adc19_cfg_setup ( adc19_cfg_t *cfg );
adc19_init
Initialization function.
err_t adc19_init ( adc19_t *ctx, adc19_cfg_t *cfg );
adc19_set_vref
This function sets the voltage reference value that will be used for voltage calculation.
void adc19_set_vref ( adc19_t *ctx, float vref );
adc19_set_input_channel
This function sets the selected input channel active by modifying the control register.
err_t adc19_set_input_channel ( adc19_t *ctx, uint8_t input_ch );
adc19_get_voltage
This function reads the voltage from the previously selected channel by using SPI serial interface.
err_t adc19_get_voltage ( adc19_t *ctx, float *voltage );
This example demonstrates the use of ADC 19 Click board by reading the voltage from the two analog input channels.
The demo application is composed of two sections :
Initializes the driver and logger and sets the ADC voltage reference.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
adc19_cfg_t adc19_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
adc19_cfg_setup( &adc19_cfg );
ADC19_MAP_MIKROBUS( adc19_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == adc19_init( &adc19, &adc19_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
adc19_set_vref ( &adc19, ADC19_VREF_3V3 );
log_info( &logger, " Application Task " );
}
Reads and displays the voltage from the two analog input channels on the USB UART approximately every 500ms.
void application_task ( void )
{
float voltage;
if ( ADC19_OK == adc19_set_input_channel ( &adc19, ADC19_INPUT_CHANNEL_1 ) )
{
if ( ADC19_OK == adc19_get_voltage ( &adc19, &voltage ) )
{
log_printf ( &logger, " IN1 : %.3f V \r\n", voltage );
}
}
if ( ADC19_OK == adc19_set_input_channel ( &adc19, ADC19_INPUT_CHANNEL_2 ) )
{
if ( ADC19_OK == adc19_get_voltage ( &adc19, &voltage ) )
{
log_printf ( &logger, " IN2 : %.3f V \r\n\n", voltage );
}
}
Delay_ms ( 500 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.ADC19
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.