Skip to content

Latest commit

 

History

History

battboost2

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

BATT Boost 2 Click

BATT Boost 2 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Ilic
  • Date : Feb 2024.
  • Type : I2C type

Software Support

Example Description

This library contains API for the BATT Boost 2 Click driver. This driver provides the functions to control battery energy management device designed to maximize usable capacity from non-rechargeable.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BATTBoost2

Example Key Functions

  • battboost2_cfg_setup Config Object Initialization function.
void battboost2_cfg_setup ( battboost2_cfg_t *cfg );
  • battboost2_init Initialization function.
err_t battboost2_init ( battboost2_t *ctx, battboost2_cfg_t *cfg );
  • battboost2_default_cfg Click Default Configuration function.
err_t battboost2_default_cfg ( battboost2_t *ctx );
  • battboost2_set_vset This function is used to control the output voltage levels of the NBM7100ABQX, Coin cell battery life booster with adaptive power optimization on the BATT Boost 2 Click board.
err_t battboost2_set_vset ( battboost2_t *ctx, float vset );
  • battboost2_high_impedance_mode This function is used to configures the VDH high-impedance mode in Standby and Active states of the NBM7100ABQX, Coin cell battery life booster with adaptive power optimization on the BATT Boost 2 Click board.
err_t battboost2_high_impedance_mode ( battboost2_t *ctx );
  • battboost2_set_on_pin_state This function sets the desired states of the ON (RST) pin of the NBM7100ABQX, Coin cell battery life booster with adaptive power optimization on the BATT Boost 2 Click board.
void battboost2_set_on_pin_state ( battboost2_t *ctx, uint8_t start );

Application Init

Initialization of I2C module and log UART. After driver initialization, the app executes a default configuration, sets the output voltage to 1.8V, charge current to 16mA, and early warning voltage to 2.6V.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    battboost2_cfg_t battboost2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    battboost2_cfg_setup( &battboost2_cfg );
    BATTBOOST2_MAP_MIKROBUS( battboost2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == battboost2_init( &battboost2, &battboost2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( BATTBOOST2_ERROR == battboost2_default_cfg ( &battboost2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the BATT Boost 2 Click board. The demo application uses two operations in two states: the charging state and the active state. First, when the device is in a Charge state, the external storage capacitor is charging from VBT using a constant current and displays storage capacitor voltage levels and charge cycle count. Upon completion of a Charge state, the device transitions to the Active state at which time VDH becomes a regulated voltage output of 1.8V (default configuration), displays storage capacitor voltage level, and monitors alarms for low output voltage (below 1.8V) and early warning (below 2.4V). Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    float vcap = 0;
    uint8_t status = 0;
    uint32_t chenergy = 0;

    if ( BATTBOOST2_STATUS_READY != battboost2_get_ready( &battboost2 ) )
    {
        if ( BATTBOOST2_OK == battboost2_set_op_mode( &battboost2, BATTBOOST2_OP_MODE_CHARGE ) )
        {
            log_printf( &logger, "\nOperating state: Charge\r\n" );
        }

        if ( BATTBOOST2_OK == battboost2_get_vcap( &battboost2, &vcap ) )
        {
            log_printf( &logger, " Capacitor Voltage: %.2f V \r\n", vcap );
        }

        if ( BATTBOOST2_OK == battboost2_get_chenergy( &battboost2, &chenergy ) )
        {
            log_printf( &logger, " Charge cycle count: %lu \r\n", chenergy );
        }
        Delay_ms ( 1000 );
    }
    else
    {
        if ( BATTBOOST2_OK == battboost2_set_op_mode( &battboost2, BATTBOOST2_OP_MODE_ACTIVE ) )
        {
            log_printf( &logger, "\nOperating state: Active\r\n" );
            if ( BATTBOOST2_OK == battboost2_get_vcap( &battboost2, &vcap ) )
            {
                log_printf( &logger, " Capacitor Voltage: %.2f V \r\n", vcap );
            }

            if ( BATTBOOST2_OK == battboost2_get_status( &battboost2, &status ) )
            {
                if ( BATTBOOST2_STATUS_EW & status )
                {
                    log_printf( &logger, " Status: Early warning.\r\n" );
                }

                if ( BATTBOOST2_STATUS_ALRM & status )
                {
                    log_printf( &logger, " Status: Low output voltage in the Active state.\r\n" );
                }
            }
        }
        Delay_ms ( 1000 );
    }
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.