Skip to content

Latest commit

 

History

History

brushless9

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Brushless 9 Click

Brushless 9 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Luka Filipovic
  • Date : Dec 2020.
  • Type : PWM type

Software Support

Example Description

This application is a showcase of controlling speed and direction of brushless motor with hall sensor.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless9

Example Key Functions

  • brushless9_cfg_setup Config Object Initialization function.
void brushless9_cfg_setup ( brushless9_cfg_t *cfg );
  • brushless9_init Initialization function.
err_t brushless9_init ( brushless9_t *ctx, brushless9_cfg_t *cfg );
  • brushless9_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).
err_t brushless9_set_duty_cycle ( brushless9_t *ctx, float duty_cycle );
  • brushless9_set_dir This function sets dir pin output to status setting.
void brushless9_set_dir ( brushless9_t *ctx, uint8_t state );
  • brushless9_set_brk This function sets brk pin output to status setting.
void brushless9_set_brk ( brushless9_t *ctx, uint8_t state );

Application Init

Initialization of LOG, PWM module and additional pins for controlling motor.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless9_cfg_t brushless9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless9_cfg_setup( &brushless9_cfg );
    BRUSHLESS9_MAP_MIKROBUS( brushless9_cfg, MIKROBUS_1 );
    err_t init_flag  = brushless9_init( &brushless9, &brushless9_cfg );
    if ( init_flag == PWM_ERROR )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    brushless9_set_dir( &brushless9, direction );
    brushless9_set_brk( &brushless9, 1 );

    brushless9_set_duty_cycle ( &brushless9, 0 );
    brushless9_pwm_start( &brushless9 );
    log_info( &logger, " Application Task " );
}

Application Task

In span of 2 seconds changes duty cycle from 0 to 100% and then back to 0, at the end changes direction of motor.

void application_task ( void )
{
    log_info( &logger, " Starting... " );
    brushless9_set_brk( &brushless9, 0 );
    for ( uint8_t duty_cnt = 1; duty_cnt < 10; duty_cnt++ )
    {
        Delay_ms ( DUTY_CHANGE_DELAY );
        brushless9_set_duty_cycle ( &brushless9, ( float ) duty_cnt / 10.0 );
        log_printf( &logger, "Duty cycle: %u%%\r\n", ( uint16_t ) ( duty_cnt * 10 ) );
    }

    for ( uint8_t duty_cnt = 10; duty_cnt > 0; duty_cnt-- )
    {
        Delay_ms ( DUTY_CHANGE_DELAY );
        brushless9_set_duty_cycle ( &brushless9, ( float ) duty_cnt / 10.0 );
        log_printf( &logger, "Duty cycle: %u%%\r\n", ( uint16_t ) ( duty_cnt * 10 ) );
    }

    Delay_ms ( DUTY_CHANGE_DELAY );
    log_info( &logger, " Stopping... " );
    brushless9_set_duty_cycle ( &brushless9, 0 );
    brushless9_set_brk( &brushless9, 1 );
    Delay_ms ( BREAK_DELAY );
    log_info( &logger, " Changing direction... " );
    direction = !direction;
    brushless9_set_dir( &brushless9, direction );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.