Skip to content

Latest commit

 

History

History

dtmf

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

DTMF Click

DTMF Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Filipovic
  • Date : Oct 2023.
  • Type : SPI type

Software Support

Example Description

This example demonstrates the use of DTMF Click board by showing the communication between the two Click boards connected to PBX system.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DTMF

Example Key Functions

  • dtmf_cfg_setup Config Object Initialization function.
void dtmf_cfg_setup ( dtmf_cfg_t *cfg );
  • dtmf_init Initialization function.
err_t dtmf_init ( dtmf_t *ctx, dtmf_cfg_t *cfg );
  • dtmf_handshake_init This function performs a handshake init which resets the device settings to default.
err_t dtmf_handshake_init ( dtmf_t *ctx );
  • dtmf_dial This function dials the selected number by alternating between DTMF and No-tone.
err_t dtmf_dial ( dtmf_t *ctx, uint8_t *dial_num );
  • dtmf_send_message This function sends an array of bytes via V.23 FSK 1200bps modem in start-stop 8.1 mode.
err_t dtmf_send_message ( dtmf_t *ctx, uint8_t *data_in, uint8_t len );

Application Init

Initializes the driver and logger, and displays the selected application mode.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    dtmf_cfg_t dtmf_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dtmf_cfg_setup( &dtmf_cfg );
    DTMF_MAP_MIKROBUS( dtmf_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == dtmf_init( &dtmf, &dtmf_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

#if ( DEMO_APP == APP_DIALING )
    log_printf( &logger, " Application Mode: Dialing\r\n" );
#elif ( DEMO_APP == APP_ANSWERING )
    log_printf( &logger, " Application Mode: Answering\r\n" );
#else
    #error "Selected application mode is not supported!"
#endif
    
    log_info( &logger, " Application Task " );
}

Application Task

Dialing application mode:

  • Resets the device settings and dials the selected number. If a call is answered it starts sending desired messages every couple of seconds with constantly checking if a call is still in progress or it's terminated from the other side.

Answering application mode:

  • Resets the device settings and waits for an incoming call indication, answers the call, and waits for a desired number of messages. The call is terminated after all messages are received successfully.
void application_task ( void )
{
    uint8_t state = DTMF_STATE_IDLE;
    uint32_t time_cnt = 0;
    uint8_t msg_cnt = 0;

    dtmf_handshake_init ( &dtmf );

#if ( DEMO_APP == APP_DIALING )
    log_printf( &logger, "\r\n Hook OFF\r\n" );
    dtmf_hook_off ( &dtmf );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, " Dial: %s\r\n", ( char * ) DIAL_NUMBER );
    dtmf_dial ( &dtmf, DIAL_NUMBER );
    dtmf.rx_mode &= DTMF_RX_LEVEL_MASK; // No change in rx level setting
    dtmf.rx_mode |= ( DTMF_RX_MODE_DTMF_TONES | DTMF_RX_TONE_DETECT_CALL_PROG );
    dtmf_set_receive_mode ( &dtmf, dtmf.rx_mode );
    for ( ; ; )
    {
        Delay_ms ( 1 );
        if ( !dtmf_get_irq_pin ( &dtmf ) )
        {
            time_cnt = 0;
            state = DTMF_STATE_IRQ_SET;
        }
        if ( ( DTMF_STATE_IRQ_SET == state ) && !dtmf_call_progress ( &dtmf ) )
        {
            if ( time_cnt < DTMF_TIMING_BUSY )
            {
                log_printf( &logger, " Busy\r\n" );
                break;
            }
            else if ( time_cnt < DTMF_TIMING_DISCONNECTED )
            {
                log_printf( &logger, " Disconnected\r\n" );
                break;
            }
            else if ( time_cnt < DTMF_TIMING_RINGING )
            {
                log_printf( &logger, " Ringing\r\n" );
                state = DTMF_STATE_RINGING;
            }
        }
        if ( ( DTMF_STATE_RINGING == state ) && ( time_cnt > DTMF_TIMING_CALL_PROGRESS ) )
        {
            log_printf( &logger, " Call in progress\r\n" );
            state = DTMF_STATE_CALL_IN_PROGRESS;
            time_cnt = 0;
        }
        if ( ( DTMF_STATE_CALL_IN_PROGRESS == state ) && !( time_cnt % DTMF_TIMING_SEND_MESSAGE ) )
        {
            log_printf( &logger, " Send message %u\r\n", ( uint16_t ) msg_cnt++ );
            dtmf_send_message ( &dtmf, TEXT_TO_SEND, strlen ( TEXT_TO_SEND ) );
        }
        if ( time_cnt++ > DTMF_TIMEOUT_CALL_PROGRESS )
        {
            log_printf( &logger, " Timeout\r\n" );
            break;
        }
    }
    log_printf( &logger, " Hook ON\r\n" );
    dtmf_hook_on ( &dtmf );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#elif ( DEMO_APP == APP_ANSWERING )
    uint8_t rx_data = 0;
    uint8_t msg_end_buff[ 2 ] = { 0 };

    log_printf( &logger, "\r\n Waiting for a call...\r\n" );

    while ( dtmf_get_rdn_pin ( &dtmf ) );

    Delay_ms ( 1000 );
    log_printf( &logger, " Hook OFF\r\n" );
    dtmf_hook_off ( &dtmf );
    Delay_ms ( 1000 );
    log_printf( &logger, " Waiting for %u messages...\r\n", ( uint16_t ) NUM_MESSAGES );
    dtmf.rx_mode &= DTMF_RX_LEVEL_MASK; // No change in rx level setting
    dtmf.rx_mode |= ( DTMF_RX_MODE_V23_FSK_1200 | DTMF_RX_USART_START_STOP | DTMF_RX_DATA_PARITY_8_NO_PAR );
    dtmf_set_receive_mode ( &dtmf, dtmf.rx_mode );

    for ( ; ; )
    {
        Delay_ms ( 1 );
        if ( !dtmf_get_irq_pin ( &dtmf ) )
        {
            if ( DTMF_STATE_IDLE != state )
            {
                log_printf( &logger, "\r\n Disconnected\r\n" );
                break;
            }
            log_printf( &logger, " Message %u: ", ( uint16_t ) msg_cnt );
            state = DTMF_STATE_IRQ_SET;
            time_cnt = 0;
        }
        if ( ( DTMF_STATE_IRQ_SET == state ) && !( time_cnt % DTMF_TIMING_RX_READY ) )
        {
            if ( dtmf_unscram_1s_det ( &dtmf ) && dtmf_rx_ready ( &dtmf ) )
            {
                dtmf_receive_data ( &dtmf, &rx_data );
                log_printf( &logger, "%c", ( uint16_t ) rx_data );
                if ( '\r' == rx_data )
                {
                    msg_end_buff[ 0 ] = rx_data;
                }
                else if ( '\n' == rx_data )
                {
                    msg_end_buff[ 1 ] = rx_data;
                }
                else
                {
                    msg_end_buff[ 0 ] = 0;
                    msg_end_buff[ 1 ] = 0;
                }
            }
            if ( ( '\r' == msg_end_buff[ 0 ] ) && ( '\n' == msg_end_buff[ 1 ] ) )
            {
                msg_end_buff[ 0 ] = 0;
                msg_end_buff[ 1 ] = 0;
                state = DTMF_STATE_IDLE;
                if ( NUM_MESSAGES == ++msg_cnt )
                {
                    Delay_ms ( 100 );
                    log_printf( &logger, " Terminate call\r\n" );
                    Delay_ms ( 100 );
                    break;
                }
            }
        }
        if ( time_cnt++ > DTMF_TIMING_WAIT_FOR_MESSAGE )
        {
            log_printf( &logger, "\r\n Timeout\r\n" );
            break;
        }
    }
    log_printf( &logger, " Hook ON\r\n" );
    dtmf_hook_on ( &dtmf );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
}

Note

We have used a Yeastar S20 VoIP PBX system for the test, where the Click boards are connected to ports 1 and 2 configured as FXS extension with numbers 1000 and 1001 (dialer).

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.