Skip to content

Latest commit

 

History

History

i2cisolator7

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

I2C Isolator 7 Click

I2C Isolator 7 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Nenad Filipovic
  • Date : Oct 2023.
  • Type : I2C type

Software Support

Example Description

This demo application shows an example of an I2C Isolator 7 Click wired to the PRESS Click board™ for reading device ID (Who am I). The library also includes an I2C writing and reading functions.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.I2CIsolator7

Example Key Functions

  • i2cisolator7_cfg_setup Config Object Initialization function.
void i2cisolator7_cfg_setup ( i2cisolator7_cfg_t *cfg );
  • i2cisolator7_init Initialization function.
err_t i2cisolator7_init ( i2cisolator7_t *ctx, i2cisolator7_cfg_t *cfg );
  • i2cisolator7_generic_write This function shall generate a START signal, followed by len number of writes from data_in.
err_t i2cisolator7_generic_write ( i2cisolator7_t *ctx, uint8_t *data_in, uint8_t len );
  • i2cisolator7_generic_read This function shall generate a START signal, followed by len number of reads from the bus placing the data in data_out.
err_t i2cisolator7_generic_read ( i2cisolator7_t *ctx, uint8_t *data_out, uint8_t len );
  • i2cisolator7_write_then_read This function performs a write operation followed by a read operation on the bus by using I2C serial interface.
err_t i2cisolator7_write_then_read ( i2cisolator7_t *ctx, uint8_t *data_in, uint8_t len_write_data, uint8_t *data_out, uint8_t len_read_data );

Application Init

The initialization of I2C module and log UART. After driver initialization, the app sets the PRESS Click board™ slave address.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    i2cisolator7_cfg_t i2cisolator7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    i2cisolator7_cfg_setup( &i2cisolator7_cfg );
    I2CISOLATOR7_MAP_MIKROBUS( i2cisolator7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == i2cisolator7_init( &i2cisolator7, &i2cisolator7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms ( 100 );
    
    if ( I2CISOLATOR7_ERROR == i2cisolator7_set_slave_address( &i2cisolator7, PRESS_DEVICE_ADDRESS ) )
    {
        log_error( &logger, " Set I2C Slave address ERROR." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the I2C Isolator 7 Click board™. Logs device ID values of the PRESS Click board™ wired to the I2C Isolator 7 Click board™.

void application_task ( void ) 
{
    uint8_t device_id = 0;
    uint8_t reg = PRESS_REG_WHO_AM_I;
    if ( I2CISOLATOR7_OK == i2cisolator7_write_then_read( &i2cisolator7, &reg, 1, &device_id, 1 ) )
    {
        if ( PRESS_WHO_AM_I == device_id )
        {
            log_printf( &logger, " Device ID: 0x%.2X\r\n", ( uint16_t ) device_id );
            log_printf( &logger, "---------------------\r\n" );
        }
    }
    Delay_ms ( 1000 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.