I2C to CAN Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Nenad Filipovic
- Date : Apr 2021.
- Type : I2C type
This library contains API for the I2C to CAN Click driver. This demo application shows an example of an I2C CAN Click wired to the VAV Press Click for reading differential pressure and temperature measurement.
- MikroSDK.Board
- MikroSDK.Log
- Click.I2cToCan
i2ctocan_cfg_setup
Config Object Initialization function.
void i2ctocan_cfg_setup ( i2ctocan_cfg_t *cfg );
i2ctocan_init
Initialization function.
err_t i2ctocan_init ( i2ctocan_t *ctx, i2ctocan_cfg_t *cfg );
i2ctocan_default_cfg
Click Default Configuration function.
void i2ctocan_default_cfg ( i2ctocan_t *ctx );
i2ctocan_set_slave_address
Set I2C Slave address function.
err_t i2ctocan_set_slave_address ( i2ctocan_t *ctx, uint8_t slave_addr );
i2ctocan_generic_write
I2C to CAN I2C writing function.
err_t i2ctocan_generic_write ( i2ctocan_t *ctx, uint8_t reg, uint8_t *tx_buf, uint8_t tx_len );
i2ctocan_generic_read
I2C to CAN I2C reading function.
err_t i2ctocan_generic_read ( i2ctocan_t *ctx, uint8_t reg, uint8_t *rx_buf, uint8_t rx_len );
Initialization of I2C module and log UART. After driver initialization and default settings, the app set VAV Press Click I2C slave address ( 0x5C ) and enable device.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
i2ctocan_cfg_t i2ctocan_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "\r\n" );
log_info( &logger, " Application Init " );
// Click initialization.
i2ctocan_cfg_setup( &i2ctocan_cfg );
I2CTOCAN_MAP_MIKROBUS( i2ctocan_cfg, MIKROBUS_1 );
err_t init_flag = i2ctocan_init( &i2ctocan, &i2ctocan_cfg );
if ( init_flag == I2C_MASTER_ERROR ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
i2ctocan_default_cfg ( &i2ctocan );
log_info( &logger, " Application Task " );
Delay_ms ( 100 );
log_printf( &logger, "--------------------------------\r\n" );
log_printf( &logger, " Set I2C Slave Address \r\n" );
i2ctocan_set_slave_address ( &i2ctocan, I2CTOCAN_VAV_PRESS_DEV_ADDR );
Delay_ms ( 100 );
log_printf( &logger, "--------------------------------\r\n" );
log_printf( &logger, " Enable Device \r\n" );
log_printf( &logger, "--------------------------------\r\n" );
i2ctocan_enable_device( &i2ctocan );
Delay_ms ( 100 );
}
This is an example that shows the use of an I2C to CAN Click board™. Logs pressure difference [ Pa ] and temperature [ degree Celsius ] values of the VAV Press Click wired to the I2C to CAN Click board™.
Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
get_dif_press_and_temp( );
log_printf( &logger, " Diff. Pressure : %.4f Pa\r\n", diff_press );
log_printf( &logger, " Temperature : %.4f C\r\n", temperature );
log_printf( &logger, "--------------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
Additional Function :
get_dif_press_and_temp
Get differential pressure [ Pa ] and temperature [ degree Celsius ] function.
void get_dif_press_and_temp ( void );
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.