Skip to content

Latest commit

 

History

History

loadcell3

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


Load Cell 3 Click

Load Cell 3 Click is a compact add-on board that represents a weigh scale solution. This board features the PGA302, a low-drift, low-noise, programmable signal-conditioner device designed for various resistive bridge-sensing applications from Texas Instruments. It creates 2.5V of bridge excitation and a current output source with programmable current output up to 1mA. Two identical analog front-end (AFE) channels followed by a 16-bit Sigma-Delta ADC are available at the input, where each AFE channel has a dedicated programmable gain amplifier with gain up to 200V/V. It also comes with an on-chip temperature sensor and integrated EEPROM memory for device configuration, calibration, and user data.

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : May 2021.
  • Type : I2C type

Software Support

We provide a library for the LoadCell3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LoadCell3 Click driver.

Standard key functions :

  • loadcell3_cfg_setup Config Object Initialization function.
void loadcell3_cfg_setup ( loadcell3_cfg_t *cfg );
  • loadcell3_init Initialization function.
LOADCELL3_RETVAL loadcell3_init ( loadcell3_t *ctx, loadcell3_cfg_t *cfg );
  • loadcell3_default_cfg Click Default Configuration function.
void loadcell3_default_cfg ( loadcell3_t *ctx );

Example key functions :

  • loadcell3_tare Load Cell 3 tare the scales function.
void loadcell3_tare ( loadcell3_t *ctx, loadcell3_data_t *cell_data );
  • loadcell3_calibration Load Cell 3 calibration function.
err_t loadcell3_calibration ( loadcell3_t *ctx, uint16_t cal_val, loadcell3_data_t *cell_data );
  • loadcell3_get_weight Load Cell 3 get weight function.
float loadcell3_get_weight ( loadcell3_t *ctx, loadcell3_data_t *cell_data );

Example Description

This library contains API for the Load Cell 3 Click driver. The library also includes a function for tare and calibration and weight measurement. This demo application shows an example of weight measurement.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization and default settings, the app sets tare the scale, calibrate scale and start measurements.

void application_init ( void ) {
    log_cfg_t log_cfg;              /**< Logger config object. */
    loadcell3_cfg_t loadcell3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    loadcell3_cfg_setup( &loadcell3_cfg );
    LOADCELL3_MAP_MIKROBUS( loadcell3_cfg, MIKROBUS_1 );
    err_t init_flag = loadcell3_init( &loadcell3, &loadcell3_cfg );
    if ( init_flag == I2C_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    loadcell3_default_cfg ( &loadcell3 );
    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "     Tare the scale :    \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " >> Remove all object << \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " In the following 10 sec \r\n" );
    log_printf( &logger, " please remove all object\r\n" );
    log_printf( &logger, "     from the scale.     \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Start tare scales    \r\n" );
    loadcell3_tare ( &loadcell3, &cell_data );
    Delay_ms ( 500 );
    
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "   Tarring is complete   \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Calibrate Scale :    \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, "   >>> Load etalon <<<   \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " In the following 10 sec \r\n" );
    log_printf( &logger, "place 100g weight etalon \r\n" );
    log_printf( &logger, "    on the scale for     \r\n" );
    log_printf( &logger, "   calibration purpose.  \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Start calibration    \r\n" );

    if ( loadcell3_calibration ( &loadcell3, LOADCELL3_WEIGHT_100G, &cell_data ) == LOADCELL3_OK ) {
        log_printf( &logger, "-------------------------\r\n" );
        log_printf( &logger, "    Calibration  Done    \r\n" );

        log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
        log_printf( &logger, "  >>> Remove etalon <<<  \r\n" );
        log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
        log_printf( &logger, " In the following 10 sec \r\n" );
        log_printf( &logger, "   remove 100g weight    \r\n" );
        log_printf( &logger, "   etalon on the scale.  \r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else {
        log_printf( &logger, "-------------------------\r\n" );
        log_printf( &logger, "   Calibration  Error    \r\n" );
        for ( ; ; );
    }

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "   Start measurements :  \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
}

Application Task

This is an example that shows the use of a Load Cell 3 Click board™. The Load Cell 3 Click board can be used to measure weight, shows the measurement of scales in grams [ g ]. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) {
    weight_val = loadcell3_get_weight( &loadcell3, &cell_data );
    log_printf( &logger, "   Weight : %.2f g\r\n", weight_val );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.