Skip to content

Latest commit

 

History

History

loadcell5

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Load Cell 5 Click

Load Cell 5 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Nenad Filipovic
  • Date : Jan 2021.
  • Type : SPI type

Software Support

Example Description

This library contains API for Load Cell 5 Click driver. The library initializes and defines the SPI bus drivers to read status and ADC data. The library also includes a function for tare, calibration and weight measurement.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell5

Example Key Functions

  • loadcell5_cfg_setup Config Object Initialization function.
void loadcell5_cfg_setup ( loadcell5_cfg_t *cfg );
  • loadcell5_init Initialization function.
err_t loadcell5_init ( loadcell5_t *ctx, loadcell5_cfg_t *cfg );
  • loadcell5_default_cfg Click Default Configuration function.
void loadcell5_default_cfg ( loadcell5_t *ctx );
  • loadcell5_set_power_mode Load Cell 5 set power mode function.
err_t loadcell5_set_power_mode ( loadcell5_t *ctx, uint8_t pwr_mode );
  • loadcell5_read_adc Load Cell 5 reading ADC data function.
uint32_t loadcell5_read_adc ( loadcell5_t *ctx );
  • loadcell5_get_weight Load Cell 5 get weight function.
float loadcell5_get_weight ( loadcell5_t *ctx, loadcell5_data_t *cell_data );

Application Init

The initialization of SPI module, log UART, and additional pins and performs the power on. Sets tare the scale, calibrate scale and start measurements.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    loadcell5_cfg_t loadcell5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    loadcell5_cfg_setup( &loadcell5_cfg );
    LOADCELL5_MAP_MIKROBUS( loadcell5_cfg, MIKROBUS_1 );
    err_t init_flag  = loadcell5_init( &loadcell5, &loadcell5_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    loadcell5_default_cfg ( &loadcell5 );
    log_info( &logger, " Application Task " );
    Delay_ms ( 500 ); 
    
    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "     Tare the scale :    \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " >> Remove all object << \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " In the following 10 sec \r\n");
    log_printf( &logger, " please remove all object\r\n");
    log_printf( &logger, "     from the scale.     \r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Start tare scales    \r\n");
    loadcell5_tare ( &loadcell5, &cell_data );
    Delay_ms ( 500 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Tarring is complete   \r\n");
    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Calibrate Scale :    \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, "   >>> Load etalon <<<   \r\n");
    log_printf( &logger, "- - - - - - - - - - - - -\r\n");
    log_printf( &logger, " In the following 10 sec \r\n");
    log_printf( &logger, "place 100g weight etalon\r\n");
    log_printf( &logger, "    on the scale for     \r\n");
    log_printf( &logger, "   calibration purpose.  \r\n");
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "    Start calibration    \r\n");

    if ( loadcell5_calibration ( &loadcell5, LOADCELL5_WEIGHT_100G, &cell_data ) == LOADCELL5_OK ) {
        log_printf( &logger, "-------------------------\r\n");
        log_printf( &logger, "    Calibration  Done    \r\n");

        log_printf( &logger, "- - - - - - - - - - - - -\r\n");
        log_printf( &logger, "  >>> Remove etalon <<<  \r\n");
        log_printf( &logger, "- - - - - - - - - - - - -\r\n");
        log_printf( &logger, " In the following 10 sec \r\n");
        log_printf( &logger, "   remove 100g weight   \r\n");
        log_printf( &logger, "   etalon on the scale.  \r\n");
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else {
        log_printf( &logger, "-------------------------\r\n");
        log_printf( &logger, "   Calibration  Error   \r\n");
        for ( ; ; );
    }

    log_printf( &logger, "-------------------------\r\n");
    log_printf( &logger, "   Start measurements :  \r\n");
    log_printf( &logger, "-------------------------\r\n");
}

Application Task

This is an example that demonstrates the use of the Load Cell 5 Click board. The Load Cell 5 Click board can be used to measure weight, shows the measurement of scales in grams [ g ]. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) 
{   
    weight_val = loadcell5_get_weight( &loadcell5, &cell_data );

    log_printf(&logger, "   Weight : %.2f g\r\n", weight_val );

    Delay_ms ( 1000 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.