-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.py
164 lines (126 loc) · 5.57 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import csv
import pandas as pd
from tensorflow import keras
from sklearn.model_selection import train_test_split
from data import BodyPart
import tensorflow as tf
import tensorflowjs as tfjs
tfjs_model_dir = 'model'
# loading final csv file
def load_csv(csv_path):
df = pd.read_csv(csv_path)
df.drop(['filename'],axis=1, inplace=True)
classes = df.pop('class_name').unique()
y = df.pop('class_no')
X = df.astype('float64')
y = keras.utils.to_categorical(y)
return X, y, classes
def get_center_point(landmarks, left_bodypart, right_bodypart):
"""Calculates the center point of the two given landmarks."""
left = tf.gather(landmarks, left_bodypart.value, axis=1)
right = tf.gather(landmarks, right_bodypart.value, axis=1)
center = left * 0.5 + right * 0.5
return center
def get_pose_size(landmarks, torso_size_multiplier=2.5):
"""Calculates pose size.
It is the maximum of two values:
* Torso size multiplied by `torso_size_multiplier`
* Maximum distance from pose center to any pose landmark
"""
# Hips center
hips_center = get_center_point(landmarks, BodyPart.LEFT_HIP,
BodyPart.RIGHT_HIP)
# Shoulders center
shoulders_center = get_center_point(landmarks, BodyPart.LEFT_SHOULDER,
BodyPart.RIGHT_SHOULDER)
# Torso size as the minimum body size
torso_size = tf.linalg.norm(shoulders_center - hips_center)
# Pose center
pose_center_new = get_center_point(landmarks, BodyPart.LEFT_HIP,
BodyPart.RIGHT_HIP)
pose_center_new = tf.expand_dims(pose_center_new, axis=1)
# Broadcast the pose center to the same size as the landmark vector to
# perform substraction
pose_center_new = tf.broadcast_to(pose_center_new,
[tf.size(landmarks) // (17*2), 17, 2])
# Dist to pose center
d = tf.gather(landmarks - pose_center_new, 0, axis=0,
name="dist_to_pose_center")
# Max dist to pose center
max_dist = tf.reduce_max(tf.linalg.norm(d, axis=0))
# Normalize scale
pose_size = tf.maximum(torso_size * torso_size_multiplier, max_dist)
return pose_size
def normalize_pose_landmarks(landmarks):
"""Normalizes the landmarks translation by moving the pose center to (0,0) and
scaling it to a constant pose size.
"""
# Move landmarks so that the pose center becomes (0,0)
pose_center = get_center_point(landmarks, BodyPart.LEFT_HIP,
BodyPart.RIGHT_HIP)
pose_center = tf.expand_dims(pose_center, axis=1)
# Broadcast the pose center to the same size as the landmark vector to perform
# substraction
pose_center = tf.broadcast_to(pose_center,
[tf.size(landmarks) // (17*2), 17, 2])
landmarks = landmarks - pose_center
# Scale the landmarks to a constant pose size
pose_size = get_pose_size(landmarks)
landmarks /= pose_size
return landmarks
def landmarks_to_embedding(landmarks_and_scores):
"""Converts the input landmarks into a pose embedding."""
# Reshape the flat input into a matrix with shape=(17, 3)
reshaped_inputs = keras.layers.Reshape((17, 3))(landmarks_and_scores)
# Normalize landmarks 2D
landmarks = normalize_pose_landmarks(reshaped_inputs[:, :, :2])
# Flatten the normalized landmark coordinates into a vector
embedding = keras.layers.Flatten()(landmarks)
return embedding
def preprocess_data(X_train):
processed_X_train = []
for i in range(X_train.shape[0]):
embedding = landmarks_to_embedding(tf.reshape(tf.convert_to_tensor(X_train.iloc[i]), (1, 51)))
processed_X_train.append(tf.reshape(embedding, (34)))
return tf.convert_to_tensor(processed_X_train)
X, y, class_names = load_csv('train_data.csv')
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.15)
X_test, y_test, _ = load_csv('test_data.csv')
processed_X_train = preprocess_data(X_train)
processed_X_val = preprocess_data(X_val)
processed_X_test = preprocess_data(X_test)
inputs = tf.keras.Input(shape=(34))
layer = keras.layers.Dense(128, activation=tf.nn.relu6)(inputs)
layer = keras.layers.Dropout(0.5)(layer)
layer = keras.layers.Dense(64, activation=tf.nn.relu6)(layer)
layer = keras.layers.Dropout(0.5)(layer)
outputs = keras.layers.Dense(len(class_names), activation="softmax")(layer)
model = keras.Model(inputs, outputs)
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
# Add a checkpoint callback to store the checkpoint that has the highest
# validation accuracy.
checkpoint_path = "weights.best.hdf5"
checkpoint = keras.callbacks.ModelCheckpoint(checkpoint_path,
monitor='val_accuracy',
verbose=1,
save_best_only=True,
mode='max')
earlystopping = keras.callbacks.EarlyStopping(monitor='val_accuracy',
patience=20)
# Start training
print('--------------TRAINING----------------')
history = model.fit(processed_X_train, y_train,
epochs=200,
batch_size=16,
validation_data=(processed_X_val, y_val),
callbacks=[checkpoint, earlystopping])
print('-----------------EVAUATION----------------')
loss, accuracy = model.evaluate(processed_X_test, y_test)
print('LOSS: ', loss)
print("ACCURACY: ", accuracy)
tfjs.converters.save_keras_model(model, tfjs_model_dir)
print('tfjs model saved at ',tfjs_model_dir)