-
Notifications
You must be signed in to change notification settings - Fork 1
/
upr-pair.py
479 lines (378 loc) · 18.2 KB
/
upr-pair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import random
import numpy
import json
import time
import argparse
import os
import shutil
import torch
import torch.distributed as dist
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM
)
from tqdm import tqdm
from utils import (
print_rank_0,
get_openqa_dataset,
get_one_epoch_dataloader,
initialize_distributed
)
LANG_ID_TO_LANG = {
"ar": "Arabic",
"bn": "Bengali",
"fi": "Finnish",
"ja": "Japanese",
"ko": "Korean",
"ru": "Russian",
"te": "Telugu",
"en": "English",
"es": "Spanish",
"km": "Khmer",
"ms": "Malay",
"tr": "Turkish",
"sv": "Swedish",
"zh": "Chinese"
}
def set_random_seed(seed):
"""Set random seed for reproducibility."""
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
class UnsupervisedPassageReranker():
def __init__(self, args):
self.model = None
self.dataloader = None
self.dataset = None
self.evidence_dataset = None
self.args = args
self.log_interval = args.log_interval
# Hard coding the per gpu batch size to 1
self.batch_size = 1
self.load_attributes()
self.is_main_builder = dist.get_rank() == 0
self.num_total_builders = dist.get_world_size()
self.temp_dir_name = args.reranker_output_dir
def load_attributes(self):
print_rank_0("Loading {} weights".format(self.args.hf_model_name))
model_class = AutoModelForCausalLM if self.args.causal_model else AutoModelForSeq2SeqLM
self.tokenizer = AutoTokenizer.from_pretrained(self.args.hf_model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if self.args.use_int8:
self.model = model_class.from_pretrained(
self.args.hf_model_name,
device_map="auto",
load_in_8bit=True
)
else:
self.model = model_class.from_pretrained(
self.args.hf_model_name,
torch_dtype=torch.float16 if self.args.use_fp16 else torch.float32
)
for param in self.model.parameters():
param.requires_grad = False
if self.args.use_gpu and not self.args.use_int8:
self.model = self.model.cuda()
print_rank_0("Loaded {} weights".format(self.args.hf_model_name))
# disable dropout
self.model.eval()
self.dataset = get_openqa_dataset(self.args.task_name,
self.args.retriever_topk_passages_path,
sample_rate=self.args.sample_rate)
self.dataloader = iter(get_one_epoch_dataloader(self.dataset,
self.args,
self.batch_size))
self.iteration = self.total_processed = 0
def do_inference(self):
reranked_answers_list = []
original_answers_list = []
reranked_data = []
start_time = time.time()
progress_bar = tqdm(
total=self.args.max_inference_samples or len(self.dataset),
disable=not self.is_main_builder
)
with open(self.args.instruction_file) as jsonfile:
instruction = json.load(jsonfile)
if not instruction["generate"]:
assert isinstance(instruction["options"], list)
option_ids = self.tokenizer.convert_tokens_to_ids(instruction["options"])
encoder_max_length = instruction.get("encoder_max_length", 512)
while True:
try:
# batch also has query_tokens and query_pad_data
batch = next(self.dataloader)
except (StopIteration, IndexError):
break
assert len(batch['id']) == 1, "Currently, we are doing inference with batch size 1"
all_contexts = batch['encoder_ids'][0][:self.args.topk_passages]
all_ids = []
context_list = []
question = batch['question'][0]
if instruction.get("question_max_length", None) is not None:
question_tokens = self.tokenizer(question).input_ids
if instruction.get("question_max_length_right", None) is not None:
question_tokens = question_tokens[:instruction["question_max_length"]] + \
question_tokens[-instruction["question_max_length_right"]:]
else:
question_tokens = question_tokens[:instruction["question_max_length"]]
question = self.tokenizer.decode(question_tokens, skip_special_tokens=True)
all_contexts_text = []
for context in all_contexts:
text = context["text"]
title = context["title"]
text = f"{title} {text}"
if instruction.get("context_max_length", None) is not None:
text_tokens = self.tokenizer(text).input_ids
text_tokens = text_tokens[:instruction["context_max_length"]]
text = self.tokenizer.decode(text_tokens, skip_special_tokens=True)
all_contexts_text.append(text)
# run 2 for loops
# create pairwise combinations of all_contexts
for i, context in enumerate(all_contexts):
text = all_contexts_text[i]
for j, other_context in enumerate(all_contexts):
if i == j:
continue
other_text = all_contexts_text[j]
input_text = instruction["instruction"].format(
context=text, other_context=other_text, question=question
)
all_ids.append(input_text)
context_list.append((i, j))
if len(all_ids) == 0:
item = {
"id": batch["id"][0],
"question": batch['question'][0],
"answers": batch['answers'][0],
"ctxs": all_contexts,
"lang": batch['lang'][0]
}
reranked_data.append(item)
continue
input_encoding = self.tokenizer(all_ids,
padding='longest',
max_length=encoder_max_length,
pad_to_multiple_of=8,
truncation=True,
return_tensors='pt')
context_tensor, attention_mask = input_encoding.input_ids, input_encoding.attention_mask
decoder_input_ids = torch.zeros((len(context_tensor), 1)).long()
if self.args.use_gpu:
context_tensor = context_tensor.cuda()
attention_mask = attention_mask.cuda()
decoder_input_ids = decoder_input_ids.cuda()
all_outputs = []
for i in range(0, len(context_tensor), self.args.shard_size):
encoder_tensor_view = context_tensor[i: i + self.args.shard_size]
attention_mask_view = attention_mask[i: i + self.args.shard_size]
decoder_input_ids_view = decoder_input_ids[i: i + self.args.shard_size]
with torch.no_grad():
max_length_shard = attention_mask_view.sum(dim=1).max().item()
if self.tokenizer.padding_side == "left":
encoder_tensor_view = encoder_tensor_view[:, -max_length_shard:]
attention_mask_view = attention_mask_view[:, -max_length_shard:]
else:
encoder_tensor_view = encoder_tensor_view[:, :max_length_shard]
attention_mask_view = attention_mask_view[:, :max_length_shard]
if self.args.causal_model:
outputs = self.model(
encoder_tensor_view,
attention_mask=attention_mask_view
).logits
else:
outputs = self.model(
encoder_tensor_view,
attention_mask=attention_mask_view,
decoder_input_ids=decoder_input_ids_view
).logits
all_outputs.extend(outputs)
# iterated through all_outputs
# now we need to get the scores for each context
ctx_scores = {}
for i, (ctx1, ctx2) in enumerate(context_list):
option_logits = [all_outputs[i][-1][j].detach().float().cpu().item() for j in option_ids]
probs = torch.softmax(torch.tensor(option_logits), dim=-1)
# probs[0] is the probability of the first passage winning
# probs[1] is the probability of the second passage winning
# we aggregate the probabilities for each passage by summing them
if ctx1 not in ctx_scores:
ctx_scores[ctx1] = 0
if ctx2 not in ctx_scores:
ctx_scores[ctx2] = 0
ctx_scores[ctx1] += probs[0].item()
ctx_scores[ctx2] += probs[1].item()
# now we have the scores for each context
# we need to sort them and get the topk
for i, ctx in enumerate(all_contexts):
ctx["score"] = ctx_scores[i]
all_contexts = sorted(all_contexts, key=lambda x: x["score"], reverse=True)
item = {
"id": batch["id"][0],
"question": batch['question'][0],
"answers": batch['answers'][0],
"ctxs": all_contexts,
"lang": batch['lang'][0]
}
reranked_data.append(item)
if self.args.max_inference_samples and len(reranked_data) >= self.args.max_inference_samples:
break
progress_bar.update(len(batch["id"]))
end_time = time.time()
time_taken = end_time - start_time
time_taken_per_question = time_taken / len(reranked_data)
torch.distributed.barrier()
print_rank_0("Time taken: {} seconds".format(time_taken))
print_rank_0("Time taken per question: {} seconds".format(time_taken_per_question))
self.save_shard(reranked_data)
answers_per_language = {}
for item, orig, reranked in zip(reranked_data, original_answers_list, reranked_answers_list):
lang = item['lang']
if lang not in answers_per_language:
answers_per_language[lang] = ([], [])
answers_per_language[lang][0].append(orig)
answers_per_language[lang][1].append(reranked)
for language in answers_per_language.keys():
self.compute_topk_recall(
answers_per_language[language][0],
string_prefix=f"Original Ranking - {language}"
)
self.compute_topk_recall(
answers_per_language[language][1],
string_prefix=f"Re-Ranking - {language}"
)
self.compute_topk_recall(original_answers_list, string_prefix="Original Ranking")
self.compute_topk_recall(reranked_answers_list, string_prefix="Re-Ranking")
if self.args.merge_shards_and_save:
self.save_shard(reranked_data)
del self.model
# This process signals to finalize its shard and then synchronize with the other processes
torch.distributed.barrier()
if self.args.merge_shards_and_save:
# rank 0 process builds the final copy
if self.is_main_builder:
self.merge_shards_and_save()
# complete building the final copy
torch.distributed.barrier()
@staticmethod
def calculate_topk_hits(scores, max_k):
top_k_hits = [0] * max_k
for question_hits in scores:
best_hit = next((i for i, x in enumerate(question_hits[:max_k]) if x), None)
if best_hit is not None:
top_k_hits[best_hit:] = [v + 1 for v in top_k_hits[best_hit:]]
return top_k_hits
def compute_topk_recall(self, answers_list, string_prefix):
topk_hits = self.calculate_topk_hits(answers_list, max_k=self.args.report_topk_accuracies[-1])
topk_hits = torch.FloatTensor(topk_hits).cuda()
n_docs = torch.FloatTensor([len(answers_list)]).cuda()
torch.distributed.all_reduce(topk_hits, torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(n_docs, torch.distributed.ReduceOp.SUM)
if torch.distributed.get_rank() == 0:
topk_hits = topk_hits / n_docs
print(f"{string_prefix}. # docs: {n_docs.item()}")
for i in self.args.report_topk_accuracies:
print_rank_0("top-{}: {:.2f}".format(i, topk_hits[i - 1] * 100))
print()
def save_shard(self, data):
"""
Save the block data that was created this in this process
"""
if not os.path.isdir(self.temp_dir_name):
os.makedirs(self.temp_dir_name, exist_ok=True)
outpath = os.path.join(self.temp_dir_name, "rank{}.json".format(dist.get_rank()))
with open(outpath, "w") as writer:
writer.write(json.dumps(data, indent=4) + "\n",)
print(f"Wrote output to {outpath}")
def merge_shards_and_save(self):
"""Combine all the shards made using self.save_shard()"""
shard_names = os.listdir(self.temp_dir_name)
all_data = []
for fname in os.listdir(self.temp_dir_name):
shard_size = 0
old_size = len(all_data)
fpath = '{}/{}'.format(self.temp_dir_name, fname)
with open(fpath, 'r') as f:
data = json.load(f)
shard_size = len(data)
all_data.extend(data)
assert len(all_data) == old_size + shard_size
os.remove(fpath)
# save the consolidated shards
outpath = os.path.join(self.args.reranker_output_dir, "{}.json".format(self.args.special_suffix))
with open(outpath, 'w') as writer:
writer.write(json.dumps(all_data, indent=4) + "\n")
print("Finished merging {} shards for a total of {} embeds".format(
len(shard_names), len(all_data)), flush=True)
# make sure that every single piece of data was embedded
assert len(all_data) == len(self.dataset)
shutil.rmtree(self.temp_dir_name, ignore_errors=True)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='argument-parser')
group.add_argument('--local_rank', type=int, default=-1,
help='local rank passed from distributed launcher.')
group.add_argument('--main-port', type=int, default=29500,
help='Main port number.')
group.add_argument('--special-suffix', type=str, default="",
help='special suffix extension for saving merged file')
group.add_argument(
'--retriever-topk-passages-path',
type=str,
default="downloads/data/retriever-outputs/nq-dev.json",
help='Path of the Top-K passage output file from retriever (.json file)'
)
group.add_argument('--topk-passages', type=int, default=1000,
help='number of topk passages to select')
group.add_argument('--log-interval', type=int, default=100,
help='Interval between progress updates')
group.add_argument('--shard-size', type=int, default=16)
group.add_argument('--num-workers', type=int, default=2,
help="Dataloader number of workers.")
group.add_argument('--reranker-output-dir', type=str, default="downloads/data/retriever-outputs/",
help='Path to save UPR results')
group.add_argument('--task-name', type=str, default="reranking",
help='Name of the task.')
group.add_argument('--hf-model-name', type=str, default="t5-large",
help='Name of the HF model.')
group.add_argument('--interactive-node', action='store_true',
help='If the node is interactive or not')
group.add_argument('--use-gpu', action='store_true',
help='Use GPU or not')
group.add_argument('--use-fp16', action='store_true',
help='Whether to use FP16 data format for the T0/T5 models')
group.add_argument('--use-int8', action='store_true',
help='Whether to use INT8 data format for the T0/T5 models')
group.add_argument('--causal-model', action='store_true',
help='Whether this model is a causal model such as LLaMA')
group.add_argument('--merge-shards-and-save', action='store_true',
help='whether to merge individual data shards or not for reranking')
group.add_argument('--sample-rate', type=float, default=1.,
help="Sample rate for the number of examples.")
group.add_argument('--max-inference-samples', type=int, default=None,
help="Maximum number of examples to perform inference.")
group.add_argument('--random-seed', type=int, default=1234,
help="Random seed.")
group.add_argument('--evidence-data-path', type=str, default=None,
help='Path to Wikipedia evidence passages file')
group.add_argument('--instruction_file', type=str, default="instructions/default.json",
help='Instruction file for the model')
group.add_argument('--report-topk-accuracies', nargs='+', type=int, default=[1, 5, 10, 20, 50, 100],
help="Which top-k accuracies to report (e.g. '1 5 20')")
args = parser.parse_args()
args.keep_empty = False
# some default/dummy values for the tokenizer
# Distributed args.
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
return args
def main():
args = get_args()
set_random_seed(args.random_seed)
initialize_distributed(args)
reranker = UnsupervisedPassageReranker(args)
reranker.do_inference()
if __name__ == "__main__":
main()