diff --git a/python/dalex/NEWS.md b/python/dalex/NEWS.md index 24a84bd40..b89e81a40 100644 --- a/python/dalex/NEWS.md +++ b/python/dalex/NEWS.md @@ -10,7 +10,7 @@ These are summed up in ([#368](https://github.com/ModelOriented/DALEX/issues/368 * rename modules: `dataset_level` into `model_exlpanations`, `instance_level` into `predict_explanations`, `_arena` module into `arena` * use `__dir__` method to define autocompletion in IPython environment - show only `['Explainer', 'Arena', 'fairness', 'datasets']` * add `plot` method and `result` attribute to `LimeExplanation` (use `lime.explanation.Explanation.as_pyplot_figure()` and `lime.explanation.Explanation.as_list()`) -* `CeterisParibus.plot(variable_type='categorical')` now has horizontal barplots - `horizontal_spacing=None` by default (varies on `variable_type`) +* `CeterisParibus.plot(variable_type='categorical')` now has horizontal barplots - `horizontal_spacing=None` by default (varies on `variable_type`). Also, once again added the "dot" for observation value. * `predict_fn` in `predict_surrogate` now uses `predict_function` (trying to make it work for more frameworks) #### fixes @@ -18,6 +18,11 @@ These are summed up in ([#368](https://github.com/ModelOriented/DALEX/issues/368 * fixed wrong verbose output when any value in `y_hat/residuals` was an `int` not `float` * added proper `"-"` sign to negative dropout losses in `VariableImportance.plot` +#### features + +* added `geom='bars'` to `AggregateProfiles.plot` to force the categorical plot +* added `geom='roc'` and `geom='lift'` to `ModelPerformance.plot` + #### other * remove `colorize` from `Explainer` diff --git a/python/dalex/dalex/model_explanations/_aggregated_profiles/object.py b/python/dalex/dalex/model_explanations/_aggregated_profiles/object.py index 01f029acf..b819d7315 100644 --- a/python/dalex/dalex/model_explanations/_aggregated_profiles/object.py +++ b/python/dalex/dalex/model_explanations/_aggregated_profiles/object.py @@ -167,8 +167,9 @@ def plot(self, ----------- objects : AggregatedProfiles object or array_like of AggregatedProfiles objects Additional objects to plot in subplots (default is `None`). - geom : {'aggregates', 'profiles'} - If `'profiles'` then raw profiles will be plotted in the background + geom : {'aggregates', 'profiles', 'bars'} + If `'profiles'` then raw profiles will be plotted in the background, + 'bars' overrides the `_x_` column type and uses barplots for categorical data (default is `'aggregates'`, which means plot only aggregated profiles). NOTE: It is useful to use small values of the `N` parameter in object creation before using `'profiles'`, because of plot performance and clarity (e.g. `100`). @@ -206,8 +207,8 @@ def plot(self, Return figure that can be edited or saved. See `show` parameter. """ - if geom not in ("aggregates", "profiles"): - raise TypeError("geom should be 'aggregates' or 'profiles'") + if geom not in ("aggregates", "profiles", "bars"): + raise TypeError("geom should be one of {'aggregates', 'profiles', 'bars'}") if isinstance(variables, str): variables = (variables,) @@ -240,7 +241,7 @@ def plot(self, min_max_margin = dl.ptp() * 0.10 min_max = [dl.min() - min_max_margin, dl.max() + min_max_margin] - is_x_numeric = pd.api.types.is_numeric_dtype(_result_df['_x_']) + is_x_numeric = False if geom == 'bars' else pd.api.types.is_numeric_dtype(_result_df['_x_']) n = len(all_variables) facet_nrow = int(np.ceil(n / facet_ncol)) @@ -298,7 +299,7 @@ def plot(self, fig = px.bar(_result_df, x="_x_", y="_diff_", color="_label_", facet_col="_vname_", category_orders={"_vname_": list(all_variables)}, - labels={'_yhat_': 'prediction', '_mp_': 'mean_prediction'}, # , color: 'group'}, + labels={'_yhat_': 'prediction', '_label_': 'label', '_mp_': 'mean_prediction'}, # , color: 'group'}, hover_name=color, base="_mp_", hover_data={'_yhat_': ':.3f', '_mp_': mp_format, '_diff_': False, @@ -316,10 +317,8 @@ def plot(self, 'ticks': 'outside', 'tickcolor': 'white', 'ticklen': 3, 'fixedrange': True, 'range': min_max}) - # add hline https://github.com/plotly/plotly.py/issues/2141 - for i, bar in enumerate(fig.data): - fig.add_shape(type='line', y0=bar.base[0], y1=bar.base[0], x0=-1, x1=len(bar.x), - xref=bar.xaxis, yref=bar.yaxis, layer='below', + for _, bar in enumerate(fig.data): + fig.add_hline(y=bar.base[0], layer='below', line={'color': "#371ea3", 'width': 1.5, 'dash': 'dot'}) fig = _theme.fig_update_line_plot(fig, title, y_title, plot_height, hovermode) diff --git a/python/dalex/dalex/model_explanations/_model_performance/object.py b/python/dalex/dalex/model_explanations/_model_performance/object.py index 4fd51bcc2..34fb67b01 100644 --- a/python/dalex/dalex/model_explanations/_model_performance/object.py +++ b/python/dalex/dalex/model_explanations/_model_performance/object.py @@ -1,6 +1,5 @@ import numpy as np import pandas as pd -import plotly.graph_objects as go from . import plot, utils from ... import _theme, _global_checks @@ -119,7 +118,8 @@ def fit(self, explainer): def plot(self, objects=None, - title="Reverse cumulative distribution of |residual|", + geom="ecdf", + title=None, show=False): """Plot the Model Performance explanation @@ -127,6 +127,8 @@ def plot(self, ----------- objects : ModelPerformance object or array_like of ModelPerformance objects Additional objects to plot (default is `None`). + geom: {'ecdf', 'roc', 'lift'} + Type of plot determines how residuals shall be summarized. title : str, optional Title of the plot (default depends on the `type` attribute). show : bool, optional @@ -139,6 +141,9 @@ def plot(self, Return figure that can be edited or saved. See `show` parameter. """ + if geom not in ("ecdf", "roc", "lift"): + raise TypeError("geom should be one of {'ecdf', 'roc', 'lift'}") + # are there any other objects to plot? if objects is None: _df_list = [self.residuals.copy()] @@ -153,28 +158,15 @@ def plot(self, _global_checks.global_raise_objects_class(objects, self.__class__) colors = _theme.get_default_colors(len(_df_list), 'line') - fig = go.Figure() - - for i, _df in enumerate(_df_list): - _abs_residuals = np.abs(_df['residuals']) - _unique_abs_residuals = np.unique(_abs_residuals) - - fig.add_scatter( - x=_unique_abs_residuals, - y=1 - plot.ecdf(_abs_residuals)(_unique_abs_residuals), - line_shape='hv', - name=_df.iloc[0, _df.columns.get_loc('label')], - marker=dict(color=colors[i]) - ) - - fig.update_yaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': 'outside', - 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'tickformat': ',.0%'}) - - fig.update_xaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': "outside", - 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'title_text': '|residual|'}) - - fig.update_layout(title_text=title, title_x=0.15, font={'color': "#371ea3"}, template="none", - margin={'t': 78, 'b': 71, 'r': 30}) + + if geom == 'ecdf': + fig = plot.plot_ecdf(_df_list, colors, title) + elif geom == 'roc': + fig = plot.plot_roc(_df_list, colors, title) + elif geom == 'lift': + fig = plot.plot_lift(_df_list, colors, title) + else: + raise TypeError("geom should be one of {'ecdf', 'roc', 'lift'}") if show: fig.show(config=_theme.get_default_config()) diff --git a/python/dalex/dalex/model_explanations/_model_performance/plot.py b/python/dalex/dalex/model_explanations/_model_performance/plot.py index a32ffa12d..32d4956df 100644 --- a/python/dalex/dalex/model_explanations/_model_performance/plot.py +++ b/python/dalex/dalex/model_explanations/_model_performance/plot.py @@ -1,5 +1,6 @@ import numpy as np - +import pandas as pd +import plotly.graph_objects as go def ecdf(x): # https://community.plot.ly/t/plot-the-empirical-cdf/29045 @@ -9,3 +10,98 @@ def result(v): return np.searchsorted(x, v, side='right') / x.size return result + + +def plot_ecdf(df_list, colors, title): + fig = go.Figure() + + for i, _df in enumerate(df_list): + _abs_residuals = np.abs(_df['residuals']) + _unique_abs_residuals = np.unique(_abs_residuals) + + fig.add_scatter( + x=_unique_abs_residuals, + y=1 - ecdf(_abs_residuals)(_unique_abs_residuals), + line_shape='hv', + name=_df.iloc[0, _df.columns.get_loc('label')], + marker=dict(color=colors[i]) + ) + + fig.update_yaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': 'outside', + 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'tickformat': ',.0%'}) + + fig.update_xaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': "outside", + 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'title_text': '|residual|'}) + + title = "Reverse cumulative distribution of |residual|" if title is None else title + fig.update_layout(title_text=title, title_x=0.15, font={'color': "#371ea3"}, template="none", + margin={'t': 78, 'b': 71, 'r': 30}) + + return fig + + +def plot_roc(df_list, colors, title): + fig = go.Figure() + grid_points = 101 + idx = np.arange(df_list[0].shape[0], step=int(df_list[0].shape[0]/grid_points)) + for i, _df in enumerate(df_list): + _df = _df.sort_values('y_hat', ascending=False) + _df = _df.assign(TPR=np.cumsum(_df.y)/np.sum(_df.y), + FPR=(np.cumsum(1-_df.y)/np.sum(1-_df.y))) + if _df.shape[0] > grid_points: + _df = _df.iloc[idx,:].sort_values('FPR', ascending=True) + + fig.add_scatter( + x=_df.FPR, + y=_df.TPR, + line_shape='hv', + name=_df.iloc[0, _df.columns.get_loc('label')], + marker=dict(color=colors[i]) + ) + + fig.update_yaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': 'outside', + 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'title_text': 'True positive rate'}) + + fig.update_xaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': "outside", + 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'title_text': 'False positive rate'}) + title = "Receiver Operating Characteristic" if title is None else title + fig.update_layout(title_text=title, title_x=0.15, font={'color': "#371ea3"}, template="none", + margin={'t': 78, 'b': 71, 'r': 30}) + + return fig + +def plot_lift(df_list, colors, title): + fig = go.Figure() + grid_points = 101 + idx = np.arange(df_list[0].shape[0], step=int(df_list[0].shape[0]/grid_points)) + _temp_df = pd.concat(df_list) + max_lift = _temp_df.y.sum()/_temp_df.shape[0] + + for i, _df in enumerate(df_list): + _df = _df.sort_values('y_hat', ascending=False) + n = _df.shape[0] + lift = np.cumsum(_df.y)/n + pr = np.linspace(0, 1, n) + _df = _df.assign(lift=lift/pr, pr=pr) + if _df.shape[0] > grid_points: + _df = _df.iloc[idx,:].sort_values('pr', ascending=True) + + fig.add_scatter( + x=_df.pr, + y=_df.lift/max_lift, + line_shape='hv', + name=_df.iloc[0, _df.columns.get_loc('label')], + marker=dict(color=colors[i]) + ) + + fig.update_yaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': 'outside', + 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'title_text': 'Lift'}) + + fig.update_xaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': "outside", + 'tickcolor': 'white', 'ticklen': 10, 'fixedrange': True, 'title_text': 'Positive rate'}) + title = "LIFT chart" if title is None else title + fig.update_layout(title_text=title, title_x=0.15, font={'color': "#371ea3"}, template="none", + margin={'t': 78, 'b': 71, 'r': 30}) + + return fig + diff --git a/python/dalex/dalex/predict_explanations/_ceteris_paribus/object.py b/python/dalex/dalex/predict_explanations/_ceteris_paribus/object.py index d1bca8720..9a807f429 100644 --- a/python/dalex/dalex/predict_explanations/_ceteris_paribus/object.py +++ b/python/dalex/dalex/predict_explanations/_ceteris_paribus/object.py @@ -326,13 +326,13 @@ def plot(self, for _, value in enumerate(fig_points.data): fig.add_trace(value) - fig = _theme.fig_update_line_plot(fig, title, y_title, plot_height, 'closest') + fig = _theme.fig_update_line_plot(fig, title, y_title, plot_height, 'closest') else: if color=="_label_" and len(_result_df['_ids_'].unique()) > 1 and len(_result_df['_label_'].unique()) == 1: warnings.warn("'color' parameter changed to '_ids_' because there are multiple observations for one model.") color = '_ids_' - elif color=="_label_" and len(_result_df['_ids_'].unique()) != len(_result_df['_label_'].unique()): + elif color=="_label_" and len(_result_df['_ids_'].unique()) > len(_result_df['_label_'].unique()): # https://github.com/plotly/plotly.py/issues/2657 raise TypeError("Please pick one observation per label or change the `color` parameter.") @@ -362,11 +362,28 @@ def plot(self, .update_xaxes({'type': 'linear', 'gridwidth': 2, 'zeroline': False, 'automargin': True, 'ticks': 'outside', 'tickcolor': 'white', 'ticklen': 3, 'fixedrange': True, 'range': min_max}) - - # add hline https://github.com/plotly/plotly.py/issues/2141 + for _, bar in enumerate(fig.data): fig.add_vline(x=bar.base[0], layer='below', line={'color': "#371ea3", 'width': 1.5, 'dash': 'dot'}) + + if show_observations: + _points_df = _result_df.loc[_result_df['_original_'] == _result_df['_x_'], :].copy() + + fig_points = px.scatter(_points_df, + x='_yhat_', y='_x_', facet_col='_vname_', + category_orders={"_vname_": list(variable_names)}, + labels={'_yhat_': 'prediction', '_label_': 'label', '_ids_': 'id'}, + custom_data=['_text_'], + facet_col_wrap=facet_ncol, + facet_row_spacing=vertical_spacing, + facet_col_spacing=horizontal_spacing, + color_discrete_sequence=["#371ea3"]) \ + .update_traces(dict(marker_size=5*size, opacity=alpha), + hovertemplate="%{customdata[0]}") + + for _, value in enumerate(fig_points.data): + fig.add_trace(value) fig = _theme.fig_update_bar_plot(fig, title, y_title, plot_height, 'closest') diff --git a/python/dalex/dalex/wrappers/_shap/checks.py b/python/dalex/dalex/wrappers/_shap/checks.py index 9aa50c5c2..9034196f0 100644 --- a/python/dalex/dalex/wrappers/_shap/checks.py +++ b/python/dalex/dalex/wrappers/_shap/checks.py @@ -17,7 +17,9 @@ def check_shap_explainer_type(shap_explainer_type, model): if model_type.endswith("sklearn.ensemble._forest.RandomForestRegressor'>") or\ model_type.endswith("sklearn.ensemble._forest.RandomForestClassifier'>") or\ model_type.endswith("xgboost.core.Booster'>") or\ - model_type.endswith("lightgbm.basic.Booster'>"): + model_type.endswith("lightgbm.basic.Booster'>") or\ + model_type.endswith("catboost.core.CatBoostRegressor'>") or\ + model_type.endswith("catboost.core.CatBoostClassifier'>"): shap_explainer_type = "TreeExplainer" elif model_type.endswith("'keras.engine.training.Model'>") or\ model_type.endswith("nn.Module'>"): diff --git a/python/dalex/dalex/wrappers/_shap/object.py b/python/dalex/dalex/wrappers/_shap/object.py index 736a33fec..16dc9a48d 100644 --- a/python/dalex/dalex/wrappers/_shap/object.py +++ b/python/dalex/dalex/wrappers/_shap/object.py @@ -58,6 +58,8 @@ def fit(self, shap_explainer_type : {'TreeExplainer', 'DeepExplainer', 'GradientExplainer', 'LinearExplainer', 'KernelExplainer'} String name of the Explainer class (default is `None`, which automatically chooses an Explainer to use). + kwargs: dict + Keyword parameters passed to the `shapley_values` method. Returns ----------- @@ -72,7 +74,10 @@ def fit(self, new_observation = checks.check_new_observation_predict_parts(new_observation, explainer) if shap_explainer_type == "TreeExplainer": - self.shap_explainer = TreeExplainer(explainer.model, explainer.data.values) + try: + self.shap_explainer = TreeExplainer(explainer.model, explainer.data.values) + except: # https://github.com/ModelOriented/DALEX/issues/371 + self.shap_explainer = TreeExplainer(explainer.model) elif shap_explainer_type == "DeepExplainer": self.shap_explainer = DeepExplainer(explainer.model, explainer.data.values) elif shap_explainer_type == "GradientExplainer": @@ -81,7 +86,8 @@ def fit(self, self.shap_explainer = LinearExplainer(explainer.model, explainer.data.values) elif shap_explainer_type == "KernelExplainer": self.shap_explainer = KernelExplainer( - lambda x: explainer.predict(x), explainer.data.values) + lambda x: explainer.predict(x), explainer.data.values + ) self.result = self.shap_explainer.shap_values(new_observation.values, **kwargs) self.new_observation = new_observation