-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathL2RockafellerBot.cairo
538 lines (517 loc) · 18.8 KB
/
L2RockafellerBot.cairo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
%lang starknet
from starkware.cairo.common.cairo_builtins import HashBuiltin
from starkware.starknet.common.messages import send_message_to_l1
from starkware.cairo.common.math_cmp import is_le
from starkware.starknet.common.syscalls import get_caller_address
from starkware.cairo.common.alloc import alloc
from starkware.cairo.common.registers import get_fp_and_pc
from starkware.cairo.common.serialize import serialize_word
from starkware.cairo.common.math import assert_nn_le
from starkware.cairo.common.math import signed_div_rem
const PRICE_DOWN_MAX = 0
const PRICE_DOWN_EXTREME = 1
const PRICE_DOWN_LARGE = 2
const PRICE_DOWN_MID = 3
const PRICE_DOWN_SMALL = 4
const PRICE_DOWN_MIN = 5
const PRICE_UP_MIN = 6
const PRICE_UP_SMALL = 7
const PRICE_UP_MID = 8
const PRICE_UP_LARGE = 9
const PRICE_UP_EXTREME = 10
const PRICE_UP_MAX = 11
const BUY_STRATEGY = 0
const SELL_STRATEGY = 1
const NULL_STRATEGY = 2
const WETH_DECIMALS = 18
const USDC_DECIMALS = 6
@storage_var
func owner() -> (owner_address: felt):
end
@storage_var
func l1_contract() -> (l1_contract_address: felt):
end
@event
func strategy_sent_to_l2(strategy: felt, amount: felt):
end
@constructor
func constructor{
syscall_ptr : felt*,
pedersen_ptr : HashBuiltin*,
range_check_ptr,
}(_owner_address: felt, _l1_contract_address: felt):
owner.write(value=_owner_address)
l1_contract.write(value=_l1_contract_address)
return ()
end
@external
func calculateStrategy{
syscall_ptr : felt*,
pedersen_ptr : HashBuiltin*,
range_check_ptr
}(remaining_weth: felt, remaining_usdc: felt, weth_price_ratio: felt, x_data_ptr_len : felt,
x_data_ptr : felt*,
a_num_rows : felt,
a_num_cols : felt,
a_data_ptr_len : felt,
a_data_ptr : felt*,
a_bias_ptr_len : felt,
a_bias_ptr : felt*,
b_num_rows : felt,
b_num_cols : felt,
b_data_ptr_len : felt,
b_data_ptr : felt*,
b_bias_ptr_len : felt,
b_bias_ptr : felt*,
c_num_rows : felt,
c_num_cols : felt,
c_data_ptr_len : felt,
c_data_ptr : felt*,
c_bias_ptr_len : felt,
c_bias_ptr : felt*,
scale_factor : felt,) -> (strategy: felt, amount: felt):
alloc_locals
let (_owner) = owner.read()
let (_l1_contract_address) = l1_contract.read()
let (msg_sender) = get_caller_address()
assert _owner = msg_sender
let (weights_len, weights) = three_layer_nn(x_data_ptr_len, x_data_ptr, a_num_rows, a_num_cols, a_data_ptr_len, a_data_ptr,
a_bias_ptr_len, a_bias_ptr, b_num_rows, b_num_cols, b_data_ptr_len, b_data_ptr, b_bias_ptr_len, b_bias_ptr,
c_num_rows, c_num_cols, c_data_ptr_len, c_data_ptr, c_bias_ptr_len, c_bias_ptr, scale_factor)
let (temp) = getMaxWeight(weights_len, weights, 0, 0)
#local max_index: felt
#assert max_index = temp
let (max_index) = alloc()
assert [max_index] = temp
let (amount: felt*) = alloc()
let (strategy: felt*) = alloc()
let amount_usdc_max = 20000000
let amount_usdc_extreme = 10000000
let amount_usdc_large = 5000000
let amount_weth_max = amount_usdc_max * weth_price_ratio
let amount_weth_extreme = amount_usdc_extreme * weth_price_ratio
let amount_weth_large = amount_usdc_large * weth_price_ratio
let (is_overflow_weth_max) = is_le(remaining_weth, amount_weth_max)
let (is_overflow_weth_extreme) = is_le(remaining_weth, amount_weth_extreme)
let (is_overflow_weth_large) = is_le(remaining_weth, amount_weth_large)
let (is_overflow_usdc_large) = is_le(remaining_usdc, amount_usdc_large)
let (is_overflow_usdc_extreme) = is_le(remaining_usdc, amount_usdc_extreme)
let (is_overflow_usdc_max) = is_le(remaining_usdc, amount_usdc_max)
if [max_index] == PRICE_DOWN_MAX:
if is_overflow_weth_max == 1:
assert [amount] = remaining_weth
else:
assert [amount] = amount_weth_max
end
assert [strategy] = SELL_STRATEGY
end
if [max_index] == PRICE_DOWN_EXTREME:
if is_overflow_weth_extreme == 1:
assert [amount] = remaining_weth
else:
assert [amount] = amount_weth_extreme
end
assert [strategy] = SELL_STRATEGY
end
if [max_index] == PRICE_DOWN_LARGE:
if is_overflow_weth_large == 1:
assert [amount] = remaining_weth
else:
assert [amount] = amount_weth_large
end
assert [strategy] = SELL_STRATEGY
end
if [max_index] == PRICE_DOWN_MID:
# assert [strategy] = SELL_STRATEGY
#return (strategy=NULL_STRATEGY, amount=0)
if is_overflow_weth_large == 1:
assert [amount] = remaining_weth
else:
assert [amount] = amount_weth_large
end
assert [strategy] = SELL_STRATEGY
end
if [max_index] == PRICE_DOWN_SMALL:
#assert [strategy] = SELL_STRATEGY
return (strategy=NULL_STRATEGY, amount=0)
# if is_overflow_weth_large == 1:
# assert [amount] = remaining_weth
# else:
# assert [amount] = amount_weth_large
# end
# assert [strategy] = SELL_STRATEGY
end
if [max_index] == PRICE_DOWN_MIN:
#assert [strategy] = SELL_STRATEGY
return (strategy=NULL_STRATEGY, amount=0)
# if is_overflow_weth_large == 1:
# assert [amount] = remaining_weth
# else:
# assert [amount] = amount_weth_large
# end
# assert [strategy] = SELL_STRATEGY
end
if [max_index] == PRICE_UP_MIN:
#assert [strategy] = BUY_STRATEGY
return (strategy=NULL_STRATEGY, amount=0)
# if is_overflow_usdc_large == 1:
# assert [amount] = remaining_usdc
# else:
# assert [amount] = amount_usdc_large
# end
# assert [strategy] = BUY_STRATEGY
end
if [max_index] == PRICE_UP_SMALL:
#assert [strategy] = BUY_STRATEGY
return (strategy=NULL_STRATEGY, amount=0)
# if is_overflow_usdc_large == 1:
# assert [amount] = remaining_usdc
# else:
# assert [amount] = amount_usdc_large
# end
# assert [strategy] = BUY_STRATEGY
end
if [max_index] == PRICE_UP_MID:
#assert [strategy] = BUY_STRATEGY
#return (strategy=NULL_STRATEGY, amount=0)
if is_overflow_usdc_large == 1:
assert [amount] = remaining_usdc
else:
assert [amount] = amount_usdc_large
end
assert [strategy] = BUY_STRATEGY
end
if [max_index] == PRICE_UP_LARGE:
if is_overflow_usdc_large == 1:
assert [amount] = remaining_usdc
else:
assert [amount] = amount_usdc_large
end
assert [strategy] = BUY_STRATEGY
end
if [max_index] == PRICE_UP_EXTREME:
if is_overflow_usdc_extreme == 1:
assert [amount] = remaining_usdc
else:
assert [amount] = amount_usdc_extreme
end
assert [strategy] = BUY_STRATEGY
end
if [max_index] == PRICE_UP_MAX:
if is_overflow_usdc_max == 1:
assert [amount] = remaining_usdc
else:
assert [amount] = amount_usdc_max
end
assert [strategy] = BUY_STRATEGY
end
if [amount] == 0:
return (strategy=NULL_STRATEGY, amount=0)
end
let (message_payload : felt*) = alloc()
assert message_payload[0] = [strategy]
assert message_payload[1] = [amount]
send_message_to_l1(
to_address=_l1_contract_address,
payload_size=2,
payload=message_payload,
)
strategy_sent_to_l2.emit(strategy=[strategy], amount=[amount])
return (strategy=[strategy], amount=[amount])
end
func getMaxWeight{range_check_ptr}(weights_len: felt, weights: felt*, curr_check: felt, curr_max_index: felt) -> (max_index: felt):
if curr_check == weights_len:
return (max_index=curr_max_index)
else:
let (is_max) = is_le(weights[curr_max_index], weights[curr_check])
if is_max == 1:
return getMaxWeight(weights_len, weights, curr_check+1, curr_check)
end
return getMaxWeight(weights_len, weights, curr_check+1, curr_max_index)
end
end
func ryansFunc{syscall_ptr: felt*,
range_check_ptr,
}() -> (weights_len: felt, weights: felt*):
let (return_vector : felt*) = alloc()
assert return_vector[PRICE_DOWN_MAX] = 0
assert return_vector[PRICE_DOWN_EXTREME] = 0
assert return_vector[PRICE_DOWN_LARGE] = 0
assert return_vector[PRICE_DOWN_MID] = 0
assert return_vector[PRICE_DOWN_SMALL] = 0
assert return_vector[PRICE_DOWN_MIN] = 0
assert return_vector[PRICE_UP_MIN] = 0
assert return_vector[PRICE_UP_SMALL] = 0
assert return_vector[PRICE_UP_MID] = 0
assert return_vector[PRICE_UP_LARGE] = 0
assert return_vector[PRICE_UP_EXTREME] = 0
assert return_vector[PRICE_UP_MAX] = 1
return (weights_len=12, weights=return_vector)
end
# ------------------------------------ Data structs ------------------------------------
struct FlattenedMatrix:
member data : felt*
member num_rows : felt
member num_cols : felt
end
struct BasicVector:
member data_len : felt
member data_ptr : felt*
end
# ------------------------------------ Relu ------------------------------------
# --- Performs a relu (taken directly from GuiltyGyoza; all credit to him!) ---
func _relu{range_check_ptr}(x : felt) -> (y : felt):
let (bool_pos) = is_le(0, x)
let y = bool_pos * x
return (y=y)
end
# --- Recursive helper. Iterated index is `idx` ---
func _vector_relu{range_check_ptr}(x_vec : BasicVector, result_vec : BasicVector, idx : felt):
if idx == x_vec.data_len:
return ()
end
# --- Compute, assign, and recurse ---
let (relu_x : felt) = _relu(x_vec.data_ptr[idx])
assert result_vec.data_ptr[idx] = relu_x
_vector_relu(x_vec=x_vec, result_vec=result_vec, idx=idx + 1)
return ()
end
# --- Wrapper fn + sanitycheck ---
# @view
func vector_relu{range_check_ptr}(x_vec : BasicVector, result_vec : BasicVector):
# --- Sanitycheck ---
assert x_vec.data_len = result_vec.data_len
# --- Kick off the recursion ---
_vector_relu(x_vec=x_vec, result_vec=result_vec, idx=0)
return ()
end
# ------------------------------------ Matvmul ------------------------------------
# --- Computes dot product of an entire matrix row (dot) vector ---
func compute_matrow_dot_vector(
flattened_matrix : FlattenedMatrix, vector : BasicVector, row : felt, col : felt
) -> (result : felt):
alloc_locals
# --- Reached end of matrix ---
if col == flattened_matrix.num_cols:
return (0)
end
# --- Single multiplication based on offset ---
local matrix_weight = flattened_matrix.data[flattened_matrix.num_cols * row + col]
local result = matrix_weight * vector.data_ptr[col]
# --- Recurse over rest of row/vector ---
let (rest) = compute_matrow_dot_vector(
flattened_matrix=flattened_matrix, vector=vector, row=row, col=col + 1
)
# --- Result is the sum ---
return (result + rest)
end
func compute_matvmul_by_row(
flattened_matrix : FlattenedMatrix,
vector : BasicVector,
result_vector : BasicVector,
row : felt,
):
# --- End of matrix ---
if row == flattened_matrix.num_rows:
return ()
end
# --- Compute row dot product ---
let (row_result) = compute_matrow_dot_vector(
flattened_matrix=flattened_matrix, vector=vector, row=row, col=0
)
# --- Perform assignment with offset and recurse ---
assert result_vector.data_ptr[row] = row_result
compute_matvmul_by_row(
flattened_matrix=flattened_matrix, vector=vector, result_vector=result_vector, row=row + 1
)
return ()
end
func compute_matvmul(
flattened_matrix : FlattenedMatrix, vector : BasicVector, result_vector : BasicVector
):
# --- Multiply first row by vector. Write result into first result_vector slot. ---
# --- Recurse on row number until it equals m ---
compute_matvmul_by_row(
flattened_matrix=flattened_matrix, vector=vector, result_vector=result_vector, row=0
)
return ()
end
# ------------------------------------ Vector add ------------------------------------
# --- Adds two vectors together and stores the result ---
func vec_add{range_check_ptr}(v1 : BasicVector, v2 : BasicVector, result : BasicVector):
# --- Sanitycheck ---
assert v1.data_len = v2.data_len
# --- Base: Just return ---
if v1.data_len == 0:
return ()
end
# --- Call internal add fn ---
_vec_add(v1=v1, v2=v2, result=result, idx=0)
return ()
end
# --- Iterating over idx ---
func _vec_add{range_check_ptr}(
v1 : BasicVector, v2 : BasicVector, result : BasicVector, idx : felt
):
if idx == result.data_len:
return ()
end
# --- Do assignment, then recurse ---
assert result.data_ptr[idx] = v1.data_ptr[idx] + v2.data_ptr[idx]
_vec_add(v1=v1, v2=v2, result=result, idx=idx + 1)
return ()
end
# ------------------------------------ Scale vector ------------------------------------
# --- Helper ---
func _scale_vector{range_check_ptr}(
v : BasicVector, scaled_v : BasicVector, scale_factor : felt, idx : felt
):
if idx == v.data_len:
return ()
end
# --- 10^24 ~ 2^80 ---
# Note that RC_BOUND = 2**128
let (quotient : felt, remainder : felt) = signed_div_rem(
value=v.data_ptr[idx], div=scale_factor, bound=1000000000000000000000000
)
assert scaled_v.data_ptr[idx] = quotient
_scale_vector(v=v, scaled_v=scaled_v, scale_factor=scale_factor, idx=idx + 1)
return ()
end
# --- Wrapper ---
func scale_vector{range_check_ptr}(v : BasicVector, scaled_v : BasicVector, scale_factor : felt):
# --- Sanitycheck ---
assert v.data_len = scaled_v.data_len
# --- Kick off recursive helper ---
_scale_vector(v=v, scaled_v=scaled_v, scale_factor=scale_factor, idx=0)
return ()
end
# ------------------------------------ Linear layer ------------------------------------
# --- Idea here is to ---
# a) couple the matmul and bias ops
# b) perform re-scaling (since we're multiplying)
# c) take care of intermediate reps
func linear1d_forward{range_check_ptr}(
x : BasicVector,
a : FlattenedMatrix,
a_bias : BasicVector,
out : BasicVector,
scale_factor : felt,
):
alloc_locals
# --- Sanitycheck (TODO: Is this necessary?) ---
assert a.num_cols = x.data_len
assert a.num_rows = out.data_len
assert a.num_rows = a_bias.data_len
# --- Alloc intermediate repr ---
let (post_weights : felt*) = alloc()
local post_weights_vec : BasicVector = BasicVector(data_len=a.num_rows, data_ptr=post_weights)
let (scaled_post_weights : felt*) = alloc()
local scaled_post_weights_vec : BasicVector = BasicVector(data_len=a.num_rows, data_ptr=scaled_post_weights)
# --- Perform matvmul ---
compute_matvmul(flattened_matrix=a, vector=x, result_vector=post_weights_vec)
# --- Perform re-scaling ---
scale_vector(v=post_weights_vec, scaled_v=scaled_post_weights_vec, scale_factor=scale_factor)
# --- Add bias ---
vec_add(v1=scaled_post_weights_vec, v2=a_bias, result=out)
return ()
end
# ------------------------------------ 3-layer nn ------------------------------------
# --- Parameters ---
# x: Input data vector
# a: First matrix
# b: Second matrix
# --- Architecture ---
# c @ relu(b @ relu(a @ x + a_bias) + b_bias) + c_bias
func three_layer_nn{syscall_ptr : felt*, pedersen_ptr : HashBuiltin*, range_check_ptr}(
x_data_ptr_len : felt,
x_data_ptr : felt*,
a_num_rows : felt,
a_num_cols : felt,
a_data_ptr_len : felt,
a_data_ptr : felt*,
a_bias_ptr_len : felt,
a_bias_ptr : felt*,
b_num_rows : felt,
b_num_cols : felt,
b_data_ptr_len : felt,
b_data_ptr : felt*,
b_bias_ptr_len : felt,
b_bias_ptr : felt*,
c_num_rows : felt,
c_num_cols : felt,
c_data_ptr_len : felt,
c_data_ptr : felt*,
c_bias_ptr_len : felt,
c_bias_ptr : felt*,
scale_factor : felt,
) -> (output_data_ptr_len : felt, output_data_ptr : felt*):
alloc_locals
# --- Sanitycheck part 1: Matrix shapes ---
assert a_data_ptr_len = a_num_rows * a_num_cols
assert b_data_ptr_len = b_num_rows * b_num_cols
assert c_data_ptr_len = c_num_rows * c_num_cols
# --- Sanitycheck part 2: Dimensional analysis ---
assert a_num_cols = x_data_ptr_len
assert a_num_rows = b_num_cols
assert b_num_rows = c_num_cols
# --- Construct data structures ---
local a_matrix : FlattenedMatrix = FlattenedMatrix(
data=a_data_ptr, num_rows=a_num_rows, num_cols=a_num_cols
)
local a_bias : BasicVector = BasicVector(
data_len=a_bias_ptr_len, data_ptr=a_bias_ptr
)
local b_matrix : FlattenedMatrix = FlattenedMatrix(
data=b_data_ptr, num_rows=b_num_rows, num_cols=b_num_cols
)
local b_bias : BasicVector = BasicVector(
data_len=b_bias_ptr_len, data_ptr=b_bias_ptr
)
local c_matrix : FlattenedMatrix = FlattenedMatrix(
data=c_data_ptr, num_rows=c_num_rows, num_cols=c_num_cols
)
local c_bias : BasicVector = BasicVector(
data_len=c_bias_ptr_len, data_ptr=c_bias_ptr
)
# --- Construct input/intermediate data structures ---
let (x1_data_ptr : felt*) = alloc() # After first linear layer
let (x1_relu_data_ptr : felt*) = alloc() # After first relu
let (x2_data_ptr : felt*) = alloc() # After second linear layer
let (x2_relu_data_ptr : felt*) = alloc() # After second relu
let (x3_data_ptr : felt*) = alloc() # After third linear layer
local x : BasicVector = BasicVector(
data_len=x_data_ptr_len, data_ptr=x_data_ptr
)
local x1 : BasicVector = BasicVector(
data_len=a_num_rows, data_ptr=x1_data_ptr
)
local x1_relu : BasicVector = BasicVector(
data_len=a_num_rows, data_ptr=x1_relu_data_ptr
)
local x2 : BasicVector = BasicVector(
data_len=b_num_rows, data_ptr=x2_data_ptr
)
local x2_relu : BasicVector = BasicVector(
data_len=b_num_rows, data_ptr=x2_relu_data_ptr
)
local x3 : BasicVector = BasicVector(
data_len=c_num_rows, data_ptr=x3_data_ptr
)
# --- First layer ---
linear1d_forward(x=x, a=a_matrix, a_bias=a_bias, out=x1, scale_factor=scale_factor)
# --- Compute first relu ---
vector_relu(x_vec=x1, result_vec=x1_relu)
# -- Second layer: Matmul, then add bias ---
linear1d_forward(x=x1_relu, a=b_matrix, a_bias=b_bias, out=x2, scale_factor=scale_factor)
# --- Compute second relu ---
vector_relu(x_vec=x2, result_vec=x2_relu)
# --- Third layer: Matmul, then add bias ---
linear1d_forward(x=x2_relu, a=c_matrix, a_bias=c_bias, out=x3, scale_factor=scale_factor)
# --- Return output ---
# TODO(ryancao): NOTE that the output is `scale_factor` times too large!
# This doesn't matter for classification but may affect a regression
# or other kind of model. Can either re-scale here or post-compute
# (to preserve precision).
return (output_data_ptr_len=x3.data_len, output_data_ptr=x3.data_ptr)
end