Run Supervised Training with Augmentation
from tqdm import tqdm
SAMPLES_PER_CLASS = [50 , 100 , 150 , 200 , 250 ]
N_AUGMENT = [2 , 4 , 8 , 16 , 32 ]
datasets = ['bace' , 'bbbp' ]
out_file = 'eval_result_supervised_augment.csv'
N_TRIALS = 20
EPOCHS = 20
for dataset in datasets :
for SAMPLE in SAMPLES_PER_CLASS :
for n_augment in N_AUGMENT :
for i in tqdm (range (N_TRIALS )):
!python pseudo_label / main .py - - dataset - name = {dataset } - - epochs = {EPOCHS } \
- - batch - size = 16 - - model - name - or - path = shahrukhx01 / muv2x - simcse - smole - bert \
- - samples - per - class = {SAMPLE } - - eval - after = {EPOCHS } - - train - log = 0 - - train - ssl = 0 \
- - out - file = {out_file } - - n - augment = {n_augment }
!cat {out_file }
Run Pseudo Label Training
from tqdm import tqdm
SAMPLES_PER_CLASS = [50 , 100 , 150 , 200 , 250 ]
datasets = ['bace' , 'bbbp' ]
out_file = 'eval_result_pseudo_label.csv'
N_TRIALS = 20
for dataset in datasets :
for SAMPLE in SAMPLES_PER_CLASS :
for i in tqdm (range (N_TRIALS )):
!python pseudo_label / main .py - - dataset - name = {dataset } - - epochs = 60 \
- - batch - size = 16 - - model - name - or - path = shahrukhx01 / muv2x - simcse - smole - bert \
- - samples - per - class = {SAMPLE } - - eval - after = 60 - - train - log = 0 - - train - ssl = 1 - - out - file = {out_file }
!cat {out_file }
Run Pseudo Label Training with Augmentation
from tqdm import tqdm
SAMPLES_PER_CLASS = [50 , 100 , 150 , 200 , 250 ]
N_AUGMENT = [2 , 4 , 8 , 16 , 32 ]
datasets = ['bace' , 'bbbp' ]
out_file = 'eval_result_pseudo_label_augment.csv'
N_TRIALS = 20
EPOCHS = 20
for dataset in datasets :
for SAMPLE in SAMPLES_PER_CLASS :
for n_augment in N_AUGMENT :
for i in tqdm (range (N_TRIALS )):
!python pseudo_label / main .py - - dataset - name = {dataset } - - epochs = {EPOCHS } \
- - batch - size = 16 - - model - name - or - path = shahrukhx01 / muv2x - simcse - smole - bert \
- - samples - per - class = {SAMPLE } - - eval - after = {EPOCHS } - - train - log = 0 - - train - ssl = 1 \
- - out - file = {out_file } - - n - augment = {n_augment }
!cat {out_file }
from tqdm import tqdm
SAMPLES_PER_CLASS = [50 , 100 , 150 , 200 , 250 ]
datasets = ['bace' , 'bbbp' ]
posterior_thresholds = [0.8 , 0.9 ]
N_TRIALS = 20
out_file = 'eval_result_co_training.csv'
for posterior_threshold in posterior_thresholds :
for dataset in datasets :
for SAMPLE in SAMPLES_PER_CLASS :
for i in tqdm (range (N_TRIALS )):
!python co_training / main .py - - dataset - name = {dataset } - - epochs = 80 \
- - batch - size = 8 - - model - name - or - path = shahrukhx01 / muv2x - simcse - smole - bert \
- - samples - per - class = {SAMPLE } - - eval - after = 80 - - train - log = 0 - - train - ssl = 1 \
- - out - file = {out_file } - - posterior - threshold = {posterior_threshold }
!cat {out_file }