-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·344 lines (284 loc) · 13.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import yaml
import time
from tqdm import tqdm
from datetime import datetime
import torch
import numpy as np
import dill
import re
from collections import defaultdict
from model.torch_utils import load_dataset, get_optimizer, get_criterion, save_dataset, save_model, load_model
from model.data_pipeline import get_ds
from model.ms2z import Ms2z
from model.logger import TSVLogger
from model.gradient_logger import GradientLogger
def main(work_dir, files, load_name, load_epoch, load_iter, batch_size, epochs,
train_size, val_size, test_size, device,
model_info,
optimizer_info={'name':'Adam', 'lr':0.01, 'eps':0.00000001},
save_epoch=1, save_iter=None,
):
os.makedirs(work_dir, exist_ok=True)
if load_name == '' or load_name is None:
load_name = 'ckp' + datetime.now().strftime("%Y%m%d%H%M%S")
# load_name = 'ckp' + 'test1224'
load_dir = os.path.join(work_dir, 'trains', load_name)
if not os.path.exists(load_dir):
os.makedirs(load_dir)
print(f"Working directory: {load_dir}")
input_file = os.path.join(work_dir, files['tree'])
# Load the model and optimizer if load_epoch > 0
if load_epoch is not None and (load_epoch > 0 or load_epoch == -1):
print(f"Loading model from {load_dir}, epoch: {load_epoch}, iter: {load_iter}")
dataset, train_dataloader, val_dataloader, test_dataloader, ds_extra_data = \
load_dataset(
load_dir, batch_size=batch_size, name=None,
load_dataset=True, load_train_loader=True,
load_val_dataloader=True, load_test_dataloader=False,
extra_data_keys=['vocab']
)
vocab_data = ds_extra_data['vocab']
create_model_from_config = Ms2z.from_config_param
model, load_epoch, global_step, optimizer, optimizer_info = \
load_model(
create_model_from_config, load_dir, load_epoch, load_iter, device,
extra_config_data={'vocab_data': vocab_data}
)
initial_epoch = load_epoch
max_epoch = epochs + load_epoch
token_pre_train_epoch = 0
# Create a new model if load_epoch = 0
else:
vocab_file = os.path.join(work_dir, files['vocab'])
vocab_data = dill.load(open(vocab_file, 'rb'))
token_tensor, order_tensor, mask_tensor, max_seq_len, vocab_size\
= read_tensor_file(input_file)
variables = {
'token': token_tensor,
'order': order_tensor,
'mask': mask_tensor,
}
ds_extra_data = {
'vocab': vocab_data
}
dataset, train_dataloader, val_dataloader, test_dataloader \
= get_ds(variables, mode='train', batch_size=batch_size,
train_size=train_size, val_size=val_size, test_size=test_size,
device=torch.device('cpu'))
# if dataset_save_dir == '':
# dataset_save_dir = os.path.join(load_dir, 'ds')
save_dataset(load_dir, dataset, train_dataloader, val_dataloader, test_dataloader, extra_data=ds_extra_data)
load_epoch = 0
load_path = None
initial_epoch = 0
max_epoch = epochs
global_step = 0
model = Ms2z(
vocab_data=vocab_data,
max_seq_len=max_seq_len,
node_dim=model_info['node_dim'],
edge_dim=model_info['edge_dim'],
atom_layer_lstm_iterations=model_info['atom_layer_lstm_iterations'],
chem_encoder_h_size=model_info['chem_encoder_h_size'],
latent_dim=model_info['latent_dim'],
memory_seq_len=model_info['memory_seq_len'],
decoder_layers=model_info['decoder_layers'],
decoder_heads=model_info['decoder_heads'],
decoder_ff_dim=model_info['decoder_ff_dim'],
decoder_dropout=model_info['decoder_dropout'],
target_var=model_info['target_var'],
).to(device)
# define optimizer
optimizer = get_optimizer(model, optimizer_info)
print(f"train size: {len(train_dataloader.dataset)}, val size: {len(val_dataloader.dataset)}")
model.train()
val_loss_list = np.zeros([0])
logger = TSVLogger(os.path.join(load_dir, 'logs.tsv'), extra_columns=['level'])
gradient_logger = GradientLogger(os.path.join(load_dir, 'gradients.pkl'), save_interval=100)
gradient_logger = None
model.disable_sequential()
start_time = time.time()
for epoch in range(initial_epoch, max_epoch):
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{max_epoch}")
for batch in batch_iterator:
token_tensor = batch['token'].to(device)
order_tensor = batch['order'].to(device)
mask_tensor = batch['mask'].to(device)
# param_backup = {name: param.clone().detach() for name, param in model.named_parameters()}
input_tensor = {
'token': token_tensor,
'order': order_tensor,
'mask': mask_tensor,
}
target_tensor = {
'token': token_tensor,
'order': order_tensor,
'mask': mask_tensor,
}
loss_list, acc_list, target_data = \
model(input_tensor, target_tensor)
loss = calc_loss(loss_list)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
if gradient_logger is not None:
gradient_logger.log(model, global_step+1, epoch+1)
optimizer.step()
optimizer.zero_grad()
# for name, param in model.named_parameters():
# if not torch.equal(param.data, param_backup[name]):
# print(f"Parameter '{name}' was updated.")
# else:
# print(f"Parameter '{name}' was NOT updated.")
global_step += 1
loss_items = {key: f"{value['loss']:6.3f}" for key, value in target_data.items()}
for key, value in target_data.items():
if value['accuracy'] is not None:
loss_items[key] = f'{loss_items[key]}({value["accuracy"]:.3f})'
batch_iterator.set_postfix(loss_items)
current_time = time.time() - start_time
logger.log(
"train",
epoch=epoch+1, global_step=global_step,
data_size=token_tensor.shape[0], target_data=target_data,
learning_rate=optimizer.param_groups[0]['lr'],
timestamp=current_time,
# extra_columns={'level': level}
)
# Save the model and optimizer
if save_iter is not None and global_step % save_iter == 0:
save_path = save_model(
model, epoch+1, global_step, load_dir, optimizer, optimizer_info,
epoch_zero_fill=len(str(max_epoch))+1, iter_zero_fill=len(str(int(max_epoch*len(dataset)/batch_size)))+1)
print(f"Model and optimizer saved at {save_path}")
# Validation
val_loss, val_target_data = run_validation(model, val_dataloader, logger, global_step, epoch+1, optimizer=optimizer, timestamp=current_time)
val_loss_list = np.append(val_loss_list, val_loss)
val_loss_items = {key: f"{value['loss']:6.3f}" for key, value in val_target_data.items()}
for key, value in val_target_data.items():
if value['accuracy'] is not None:
val_loss_items[key] = f'{val_loss_items[key]}({value["accuracy"]:.3f})'
print(f"Validation Loss after epoch {epoch+1}: {val_loss_items} {val_loss}")
# Save the model and optimizer
if save_epoch is not None and (epoch+1) % save_epoch == 0:
save_path = save_model(
model, epoch+1, global_step, load_dir, optimizer, optimizer_info,
epoch_zero_fill=len(str(max_epoch))+1, iter_zero_fill=len(str(int(max_epoch*len(dataset)/batch_size)))+1)
print(f"Model and optimizer saved at {save_path}")
# Save the model and optimizer at the end of training
if save_epoch is not None and (epoch+1) % save_epoch != 0:
save_path = save_model(
model, epoch+1, global_step, load_dir, optimizer, optimizer_info,
epoch_zero_fill=len(str(max_epoch))+1, iter_zero_fill=len(str(int(max_epoch*len(dataset)/batch_size)))+1)
print(f"Model and optimizer saved at {save_path}")
def run_validation(model, val_dataloader, logger, global_step, epoch, optimizer, timestamp=None, extra_columns=None):
model.eval()
val_loss = 0
losses = defaultdict(lambda: {'loss': 0.0, 'accuracy': 0.0, 'criterion': ''})
total_samples = 0
with torch.no_grad():
for batch in tqdm(val_dataloader, desc="Running Validation"):
token_tensor = batch['token'].to(device)
order_tensor = batch['order'].to(device)
mask_tensor = batch['mask'].to(device)
input_tensor = {
'token': token_tensor,
'order': order_tensor,
'mask': mask_tensor,
}
target_tensor = {
'token': token_tensor,
'order': order_tensor,
'mask': mask_tensor,
}
loss_list, acc_list, target_data = \
model(input_tensor, target_tensor)
loss = calc_loss(loss_list)
# param_backup = {name: param.clone().detach() for name, param in model.named_parameters()}
samples = token_tensor.shape[0]
total_samples += samples
val_loss += loss.item() * samples
for key, value in target_data.items():
losses[key]['loss'] += value['loss'] * samples
if value['accuracy'] is not None:
losses[key]['accuracy'] += value['accuracy'] * samples
else:
losses[key]['accuracy'] = None
losses[key]['criterion'] = value['criterion']
avg_val_loss = val_loss / total_samples
target_data = losses.copy()
for key, value in target_data.items():
value['loss'] /= total_samples
if value['accuracy'] is not None:
value['accuracy'] /= total_samples
logger.log(
"validation",
epoch=epoch, global_step=global_step,
data_size=token_tensor.shape[0], target_data=target_data,
learning_rate=optimizer.param_groups[0]['lr'],
timestamp=timestamp,
extra_columns=extra_columns
)
model.train()
return avg_val_loss, target_data
def calc_loss(loss_list):
kl_loss = loss_list['KL']
pred_motif_loss = loss_list['pred_motif']
loss = 0.1 * kl_loss + pred_motif_loss
return loss
def read_tensor_file(input_file):
input_tensor = torch.load(input_file)
token_tensor = input_tensor['token']
order_tensor = input_tensor['order']
mask_tensor = input_tensor['mask']
max_seq_len = input_tensor['length']
vocab_size = input_tensor['vocab_size']
return token_tensor, order_tensor, mask_tensor, max_seq_len, vocab_size
def get_tensor_files(directory):
"""
Retrieve all tensor files with numbers in their names from the specified directory.
Args:
directory (str): Path to the directory containing the tensor files.
Returns:
dict: A dictionary where keys are numbers and values are corresponding file names.
"""
tensor_files = {}
pattern = re.compile(r'tensor_level(\d+)\.pt') # Regex to match 'tensor_level{number}.pt'
for file_name in os.listdir(directory):
match = pattern.match(file_name)
if match:
level = int(match.group(1)) # Extract the number
tensor_files[level] = os.path.join(directory, file_name)
return tensor_files
def default_param():
config = {
}
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='training Ms2z model')
parser.add_argument("-w", "--work_dir", type = str, required = True, help = "Working directory")
parser.add_argument("-p", "--param_path", type = str, default='', help = "Parameter file (.yaml)")
# parser.add_argument("-dso", "--dataset_save_dir", type = str, default='', help = "Dataset save directory")
args = parser.parse_args()
with open(args.param_path, 'r') as f:
config = yaml.safe_load(f)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device(config['train']['device'])
main(
args.work_dir,
config['file'],
config['train']['load_name'],
config['train']['load_epoch'],
config['train']['load_iter'],
config['train']['batch_size'],
config['train']['epochs'],
config['train']['train_size'],
config['train']['val_size'],
config['train']['test_size'],
device,
model_info=config['model'],
optimizer_info=config['train']['optimizer'],
save_epoch=config['train']['save_epoch'],
save_iter=config['train']['save_iter'],
)