-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimil.py
344 lines (258 loc) · 9.86 KB
/
simil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# -*- coding: utf-8 -*-
"""
Find similarity transformation parameters given a set of control points
A partial implementation of the algorithm described by Zeng et al., 2018[1]_.
Given a set of 3-D control points, the algorithm solves an optimization
problem to find the parameters of the similarity transformation
that minimizes the error of the solution, using the mathematical
concepts of dual numbers and quaternions.
Source and target control points coordinates are passed as arguments to
the `process` function, which returns the values for M (multiplier
factor), R (rotation matrix), and T (translation vector).
Once the parameters have been solved, transform coordinates with the
following formula:
``XYZ_t = M * R * XYZ_s + T``
Where:
- ``XYZ_t`` are the coordinates of the target points.
- ``M`` is the multiplier factor (`lambda_i`).
- ``R`` is the rotation matrix (`r_matrix`).
- ``XYZ_s`` are the coordinates of the source points.
- ``T`` is the translation vector (`t_vector`).
Per point weights can be used.
The solution can be forced to mirror and/or to fixed scale.
Notes
-----
Requires `numpy`.
References
----------
.. [1] Huaien Zeng, Xing Fang, Guobin Chang and Ronghua Yang (2018)
A dual quaternion algorithm of the Helmert transformation problem.
Earth, Planets and Space (2018) 70:26.
(https://doi.org/10.1186/s40623-018-0792-x)
Examples
--------
Common usage.
>>> import numpy as np
>>> np.set_printoptions(precision=3, suppress=True)
>>> import simil
>>> source_points = [[0, 0, 0],
... [0, 2, 2],
... [2, 3, 1],
... [3, 1, 2],
... [1, 1, 3]]
>>> target_points = [[3.0, 7.0, 5.0],
... [6.0, 7.0, 2.0],
... [4.5, 4.0, 0.5],
... [6.0, 2.5, 3.5],
... [7.5, 5.5, 3.5]]
>>> m, r, t = simil.process(source_points, target_points)
>>> m
1.5000000000000016
>>> r
array([[-0., 0., 1.],
[-1., -0., -0.],
[ 0., -1., 0.]])
>>> t
array([[3.],
[7.],
[5.]])
To transform, we need coordinates (instead of points) in the rows, so transpose:
>>> source_coords = np.array(source_points).T
>>> target_coords = m * r @ source_coords + t
>>> print(target_coords.T)
[[3. 7. 5. ]
[6. 7. 2. ]
[4.5 4. 0.5]
[6. 2.5 3.5]
[7.5 5.5 3.5]]
To force a fixed scale of 1.25:
>>> m, r, t = simil.process(source_points,
... target_points,
... scale=False,
... lambda_0=1.25)
>>> m
1.25
>>> print((m * r @ source_coords + t).T)
[[3.4 6.7 4.65]
[5.9 6.7 2.15]
[4.65 4.2 0.9 ]
[5.9 2.95 3.4 ]
[7.15 5.45 3.4 ]]
To force mirroring the source points:
>>> m, r, t = simil.process(source_points, target_points, lambda_0=-1)
>>> print((m * r @ source_coords + t).T)
[[4.385 6.758 3.124]
[5.329 4.987 3.951]
[4.739 3.984 2.475]
[6.097 4.987 1.648]
[6.451 5.283 3.301]]
Per point weights can be passed as a list:
>>> alpha_0 = [100, 20, 2, 20, 50]
>>> m, r, t = simil.process(source_points,
... target_points,
... alpha_0=alpha_0,
... scale=False,
... lambda_0=1)
>>> print((m * r @ source_coords + t).T)
[[3.604 6.703 4.698]
[5.604 6.703 2.698]
[4.604 4.703 1.698]
[5.604 3.703 3.698]
[6.604 5.703 3.698]]
"""
import numpy as np
# =================
# Private functions
# =================
def _get_scalar(alpha_0, q_coords=None):
if q_coords is None:
scalar = np.einsum('i->', alpha_0)
else:
scalar = np.einsum('i,i->', alpha_0, (q_coords * q_coords).sum(0))
return scalar
def _get_q_matrix(quaternions):
q_matrix = [[[q[3], -q[2], q[1], q[0]], [q[2], q[3], -q[0], q[1]], [-q[1], q[0], q[3], q[2]], [-q[0], -q[1], -q[2], q[3]]] for q in quaternions]
return np.array(q_matrix)
def _get_w_matrix(quaternions):
w_matrix = [[[q[3], q[2], -q[1], q[0]], [-q[2], q[3], q[0], q[1]], [q[1], -q[0], q[3], q[2]], [-q[0], -q[1], -q[2], q[3]]] for q in quaternions]
return np.array(w_matrix)
def _get_abc_matrices(alpha_0, m1, m2=None):
if m2 is None:
matrix = np.einsum('i,ijk->jk', alpha_0, m1)
else:
matrix = np.einsum('i,ijk->jk', alpha_0, np.transpose(m1, (0, 2, 1)) @ m2)
return matrix
def _get_blc_matrix(b_matrix, lambda_i, c_matrix):
blc_matrix = b_matrix - lambda_i * c_matrix
return blc_matrix
def _get_d_matrix(li, cs, am, blcm):
d_matrix = 2 * li * am + (1 / cs) * (blcm.T @ blcm)
return d_matrix
def _get_r_quat(d_matrix):
eigvals, eigvects = np.linalg.eig(d_matrix)
beta_1 = np.argmax(eigvals)
r_quat = eigvects[:, beta_1]
return beta_1, r_quat
def _get_lambda_next(am, bs, bm, cs, cm, rq):
expr_1 = rq.T @ am @ rq
expr_2 = (1 / cs) * (rq.T @ bm.T @ cm @ rq)
expr_3 = (1 / cs) * (rq.T @ cm.T @ cm @ rq)
lambda_next = (expr_1 - expr_2) / (bs - expr_3)
return lambda_next
def _get_solution(am, bs, bm, cs, cm, scale, li, i):
blc_matrix = _get_blc_matrix(bm, li, cm)
d_matrix = _get_d_matrix(li, cs, am, blc_matrix)
beta_1, r_quat = _get_r_quat(d_matrix)
if scale is False:
return blc_matrix, d_matrix, beta_1, r_quat, li, i
else:
lambda_next = _get_lambda_next(am, bs, bm, cs, cm, r_quat)
if abs(li - lambda_next) < 0.000001:
return blc_matrix, d_matrix, beta_1, r_quat, li, i
else:
li, i = lambda_next, i + 1
return _get_solution(am, bs, bm, cs, cm, scale, li, i)
def _get_r_matrix(r_quat):
r_w_matrix = _get_w_matrix([r_quat])[0]
r_q_matrix = _get_q_matrix([r_quat])[0]
r_matrix = (r_w_matrix.T @ r_q_matrix)[:3, :3]
return r_matrix
def _get_s_quat(c_scalar, blcm, r_quat):
s_quat = 1 / (2 * c_scalar) * (blcm @ r_quat)
return s_quat
def _get_t_vector(r_quat, s_quat):
r_w_matrix = _get_w_matrix([r_quat])[0]
t_vector = [2 * (r_w_matrix.T @ s_quat)[:3]]
return t_vector
# ================
# Process function
# ================
def process(source_points, target_points, alpha_0=None, scale=True, lambda_0=1.0):
"""
Find similarity transformation parameters given a set of control points
Parameters
----------
source_points : array_like
The function will try to cast it to a numpy array with shape:
``(n, 3)``, where ``n`` is the number of points.
Two points is the minimum requeriment (in that case, the solution
will map well all points that belong in the rect that passes
through both control points).
target_points : array_like
The function will try to cast it to a numpy array with shape:
``(n, 3)``, where ``n`` is the number of points.
The function will check that there are as many target points
as source points.
alpha_0 : array_like, optional
Per point weights.
If provided, the function will try to cast to a numpy array with
shape: ``(n,)``.
scale : boolean, optional
Allow to find a multiplier factor different from lambda_0.
Default is True.
lambda_0 : float, optional
Multiplier factor to find the first solution. Default is 1.0.
If `scale=True`, a recursion is implemented to find a better
value. If it is negative, forces mirroring. Can't be zero.
Returns
-------
lambda_i : float
Multiplier factor.
r_matrix : numpy.ndarray
Rotation matrix.
t_vector : numpy.ndarray
Translation (column) vector.
"""
# declarations and checkups
source_coords = np.array(source_points, dtype=float).T
if source_coords.ndim != 2:
err_msg = 'source_points array must have dimension = 2.'
raise ValueError(err_msg)
if source_coords.shape[0] != 3:
err_msg = 'There are not three coordinates in source points.'
raise ValueError(err_msg)
n = source_coords.shape[1]
if n == 1 or (source_coords[None, 0] == source_coords).all():
err_msg = 'There are not two distinct source points.'
raise ValueError(err_msg)
target_coords = np.array(target_points, dtype=float).T
if target_coords.ndim != 2:
err_msg = 'target_points array must have dimension = 2.'
raise ValueError(err_msg)
if target_coords.shape[0] != 3:
err_msg = 'There are not three coordinates in target points.'
raise ValueError(err_msg)
if target_coords.shape[1] != n:
err_msg = 'There are not as many target points as source points.'
raise ValueError(err_msg)
if alpha_0 is None:
alpha_0 = np.ones(n)
else:
alpha_0 = np.array(alpha_0, dtype=float)
if alpha_0.ndim != 1:
err_msg = 'alpha_0 array must have dimension = 1.'
raise ValueError(err_msg)
if alpha_0.shape != (n,):
err_msg = 'There are not as many alpha_0 coefficients as control points.'
raise ValueError(err_msg)
lambda_0 = float(lambda_0)
if lambda_0 == 0:
err_msg = 'lambda_0 cannot be zero.'
raise ValueError(err_msg)
# processes
source_q_coords = np.concatenate((source_coords, np.zeros((1, n))))
target_q_coords = np.concatenate((target_coords, np.zeros((1, n))))
b_scalar = _get_scalar(alpha_0, source_q_coords)
c_scalar = np.einsum('i->', alpha_0)
q0_w_matrix = _get_w_matrix(source_q_coords.T)
qt_q_matrix = _get_q_matrix(target_q_coords.T)
a_matrix = _get_abc_matrices(alpha_0, q0_w_matrix, qt_q_matrix)
b_matrix = _get_abc_matrices(alpha_0, qt_q_matrix)
c_matrix = _get_abc_matrices(alpha_0, q0_w_matrix)
lambda_i, i = lambda_0, 1
# d_matrix, beta_1 unused and replaced by _
blc_matrix, _, _, r_quat, lambda_i, i = _get_solution(a_matrix, b_scalar, b_matrix, c_scalar, c_matrix, scale, lambda_i, i)
r_matrix = _get_r_matrix(r_quat)
s_quat = _get_s_quat(c_scalar, blc_matrix, r_quat)
t_vector = np.array(_get_t_vector(r_quat, s_quat)).reshape(3, 1)
return lambda_i, r_matrix, t_vector