-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML_Toolbox.R
363 lines (274 loc) · 6.81 KB
/
ML_Toolbox.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
### Machine Learning Toolbox
### 1. Regression models: fitting them and evaluating their performance
# Fit lm model: model
model <- lm(price ~ ., data = diamonds)
# Predict on full data: p
p <- predict(model)
# Compute errors: error
error <- p - diamonds$price
# Calculate RMSE
sqrt(mean(error^2))
# Set seed
set.seed(42)
# Shuffle row indices: rows
rows <- sample(nrow(diamonds))
# Randomly order data
diamonds <- diamonds[rows,]
# Determine row to split on: split
split <- round(nrow(diamonds) * .80)
# Create train
train <- diamonds[1:split,]
# Create test
test <- diamonds[(split + 1):nrow(diamonds), ]
# Fit lm model on train: model
model <- lm(price ~ ., data = train)
# Predict on test: p
p <- predict(model, newdata = test)
# Compute errors: error
error <- p - test$price
# Calculate RMSE
sqrt(mean(error^2))
# Fit lm model using 10-fold CV: model
model <- train(
price ~ ., diamonds,
method = "lm",
trControl = trainControl(
method = "cv", number = 10,
verboseIter = TRUE
)
)
# Print model to console
model
# Fit lm model using 5-fold CV: model
model <- train(
medv ~ ., Boston,
method = "lm",
trControl = trainControl(
method = "cv", number = 5,
verboseIter = T
)
)
# Print model to console
model
# Fit lm model using 5 x 5-fold CV: model
model <- train(
medv ~ ., Boston,
method = "lm",
trControl = trainControl(
method = "repeatedcv", number = 5,
repeats = 5, verboseIter = TRUE
)
)
# Print model to console
model
# Predict on full Boston dataset
predict(model, Boston)
#######################
### 2. Classification models: fitting them and evaluating their performance
# Shuffle row indices: rows
rows <- sample(nrow(Sonar))
# Randomly order data: Sonar
Sonar <- Sonar[rows,]
# Identify row to split on: split
split <- round(nrow(Sonar) * .6)
# Create train
train <- Sonar[1:split, ]
# Create test
test <- Sonar[(split + 1):nrow(Sonar), ]
# Fit glm model: model
model <- glm(Class ~ ., train, family = "binomial")
# Predict on test: p
p <- predict(model, test, type = "response")
# If p exceeds threshold of 0.5, M else R: m_or_r
m_or_r <- ifelse(p > .5, "M", "R")
# Convert to factor: p_class
p_class <- as.factor(m_or_r)
# Create confusion matrix
confusionMatrix(p_class, test$Class)
# Predict on test: p
p <- predict(model, test, type = "response")
# Make ROC curve
colAUC(p, test$Class, plotROC = TRUE)
# Create trainControl object: myControl
myControl <- trainControl(
method = "cv",
number = 10,
summaryFunction = twoClassSummary,
classProbs = T, # IMPORTANT!
verboseIter = TRUE
)
# Train glm with custom trainControl: model
model <- train(Class ~ ., Sonar, method = "glm", trControl = myControl)
# Print model to console
model
#######################
### 3. Tuning model parameters to improve performance
# Fit random forest: model
model <- train(
quality ~ .,
tuneLength = 1,
data = wine, method = "ranger",
trControl = trainControl(method = "cv", number = 5, verboseIter = TRUE)
)
# Print model to console
model
# Fit random forest: model
model <- train(
quality ~ .,
tuneLength = 3,
data = wine, method = "ranger",
trControl = trainControl(method = "cv", number = 5, verboseIter = TRUE)
)
# Print model to console
model
# Plot model
plot(model)
# From previous step
tuneGrid <- data.frame(
.mtry = c(2, 3, 7),
.splitrule = "variance",
.min.node.size = 5
)
# Fit random forest: model
model <- train(
quality ~ .,
tuneGrid = tuneGrid,
data = wine,
method = "ranger",
trControl = trainControl(
method = "cv",
number = 5,
verboseIter = TRUE
)
)
# Print model to console
model
# Plot model
plot(model)
# Create custom trainControl: myControl
myControl <- trainControl(
method = "cv", number = 10,
summaryFunction = twoClassSummary,
classProbs = T, # IMPORTANT!
verboseIter = TRUE
)
# Fit glmnet model: model
model <- train(
y ~ ., overfit,
method = "glmnet",
trControl = myControl
)
# Print model to console
model
# Print maximum ROC statistic
max(model$results$ROC)
# Train glmnet with custom trainControl and tuning: model
model <- train(
y ~ ., overfit,
tuneGrid = expand.grid(alpha = 0:1,
lambda = seq(0.0001, 1, length = 20)),
method = "glmnet",
trControl = myControl
)
# Print model to console
model
# Print maximum ROC statistic
max(model$results$ROC)
#######################
### 4. Preprocessing your data
# Apply median imputation: model
model <- train(
x = breast_cancer_x, y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = "medianImpute"
)
# Print model to console
model
# Apply KNN imputation: model2
model2 <- train(
x = breast_cancer_x, y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = "knnImpute"
)
# Print model to console
model2
# Update model with standardization
model <- train(
x = breast_cancer_x,
y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = "medianImpute"
)
# Print updated model
model
# Update model with standardization
model <- train(
x = breast_cancer_x,
y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = "knnImpute"
)
# Print updated model
model
# Identify near zero variance predictors: remove_cols
remove_cols <- nearZeroVar(bloodbrain_x, names = TRUE,
freqCut = 2, uniqueCut = 20)
# Get all column names from bloodbrain_x: all_cols
all_cols <- names(bloodbrain_x)
# Remove from data: bloodbrain_x_small
bloodbrain_x_small <- bloodbrain_x[ , setdiff(all_cols, remove_cols)]
# Fit model on reduced data: model
model <- train(x = bloodbrain_x_small, y = bloodbrain_y, method = "glm")
# Print model to console
model
# Fit glm model using PCA: model
model <- train(
x = bloodbrain_x, y = bloodbrain_y,
method = "glm", preProcess = c("pca")
)
# Print model to console
model
#######################
### 5. Selecting models: a case study in churn prediction
# Create custom indices: myFolds
myFolds <- createFolds(churn_y, k = 5)
# Create reusable trainControl object: myControl
myControl <- trainControl(
summaryFunction = twoClassSummary,
classProbs = TRUE, # IMPORTANT!
verboseIter = TRUE,
savePredictions = TRUE,
index = myFolds
)
# Fit glmnet model: model_glmnet
model_glmnet <- train(
x = churn_x, y = churn_y,
metric = "ROC",
method = "glmnet",
trControl = myControl
)
# Fit random forest: model_rf
model_rf <- train(
x = churn_x, y = churn_y,
metric = "ROC",
method = "ranger",
trControl = myControl
)
# Create model_list
model_list <- list(item1 = model_glmnet, item2 = model_rf)
# Pass model_list to resamples(): resamples
resamples <- resamples(model_list)
# Summarize the results
summary(resamples)
# Create bwplot
bwplot(resamples, metric = "ROC")
# Create xyplot
xyplot(resamples, metric = "ROC")
# Create ensemble model: stack
stack <- caretStack(model_list, method = "glm")
# Look at summary
summary(stack)