-
Notifications
You must be signed in to change notification settings - Fork 3
/
process_chipseq.py
executable file
·402 lines (319 loc) · 16 KB
/
process_chipseq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#!/usr/bin/env python
"""
.. See the NOTICE file distributed with this work for additional information
regarding copyright ownership.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import print_function
import argparse
from basic_modules.workflow import Workflow
from utils import logger
from utils import remap
from tool.bwa_aligner import bwaAlignerTool
from tool.biobambam_filter import biobambam
from tool.macs2 import macs2
# ------------------------------------------------------------------------------
class process_chipseq(Workflow): # pylint: disable=invalid-name,too-few-public-methods
"""
Functions for processing Chip-Seq FastQ files. Files are the aligned,
filtered and analysed for peak calling
"""
def __init__(self, configuration=None):
"""
Initialise the class
Parameters
----------
configuration : dict
a dictionary containing parameters that define how the operation
should be carried out, which are specific to each Tool.
"""
logger.info("Processing ChIP-Seq")
if configuration is None:
configuration = {}
self.configuration.update(configuration)
def run(self, input_files, metadata, output_files): # pylint: disable=too-many-branches,too-many-locals,too-many-statements,line-too-long
"""
Main run function for processing ChIP-seq FastQ data. Pipeline aligns
the FASTQ files to the genome using BWA. MACS 2 is then used for peak
calling to identify transcription factor binding sites within the
genome.
Currently this can only handle a single data file and a single
background file.
Parameters
----------
input_files : dict
Location of the initial input files required by the workflow
genome : str
Genome FASTA file
index : str
Location of the BWA archived index files
loc : str
Location of the FASTQ reads files
fastq2 : str
Location of the paired end FASTQ file [OPTIONAL]
bg_loc : str
Location of the background FASTQ reads files [OPTIONAL]
fastq2_bg : str
Location of the paired end background FASTQ reads files [OPTIONAL]
metadata : dict
Input file meta data associated with their roles
genome : str
index : str
bg_loc : str
[OPTIONAL]
output_files : dict
Output file locations
bam [, "bam_bg"] : str
filtered [, "filtered_bg"] : str
narrow_peak : str
summits : str
broad_peak : str
gapped_peak : str
Returns
-------
output_files : dict
Output file locations associated with their roles, for the output
bam [, "bam_bg"] : str
Aligned FASTQ short read file [ and aligned background file]
locations
filtered [, "filtered_bg"] : str
Filtered versions of the respective bam files
narrow_peak : str
Results files in bed4+1 format
summits : str
Results files in bed6+4 format
broad_peak : str
Results files in bed6+3 format
gapped_peak : str
Results files in bed12+3 format
output_metadata : dict
Output metadata for the associated files in output_files
bam [, "bam_bg"] : Metadata
filtered [, "filtered_bg"] : Metadata
narrow_peak : Metadata
summits : Metadata
broad_peak : Metadata
gapped_peak : Metadata
"""
output_files_generated = {}
output_metadata = {}
logger.info("PROCESS CHIPSEQ - DEFINED OUTPUT:", output_files["bam"])
if "genome_public" in input_files:
align_input_files = remap(
input_files, genome="genome_public", loc="loc", index="index_public")
align_input_file_meta = remap(
metadata, genome="genome_public", loc="loc", index="index_public")
else:
align_input_files = remap(input_files, "genome", "loc", "index")
align_input_file_meta = remap(metadata, "genome", "loc", "index")
if "fastq2" in input_files:
align_input_files["fastq2"] = input_files["fastq2"]
align_input_file_meta["fastq2"] = metadata["fastq2"]
logger.progress("BWA Aligner", status="RUNNING")
bwa = bwaAlignerTool(self.configuration)
bwa_files, bwa_meta = bwa.run(
align_input_files,
align_input_file_meta,
{"output": output_files["bam"], "bai": output_files["bai"]}
)
logger.progress("BWA Aligner", status="DONE")
try:
output_files_generated["bam"] = bwa_files["bam"]
output_metadata["bam"] = bwa_meta["bam"]
tool_name = output_metadata['bam'].meta_data['tool']
output_metadata['bam'].meta_data['tool_description'] = tool_name
output_metadata['bam'].meta_data['tool'] = "process_chipseq"
output_files_generated["bai"] = bwa_files["bai"]
output_metadata["bai"] = bwa_meta["bai"]
tool_name = output_metadata['bai'].meta_data['tool']
output_metadata['bai'].meta_data['tool_description'] = tool_name
output_metadata['bai'].meta_data['tool'] = "process_chipseq"
except KeyError:
logger.fatal("BWA aligner failed")
if "bg_loc" in input_files:
# Align background files
if "genome_public" in input_files:
align_input_files_bg = remap(
input_files, genome="genome_public", index="index_public", loc="bg_loc")
align_input_file_meta_bg = remap(
metadata, genome="genome_public", index="index_public", loc="bg_loc")
else:
align_input_files_bg = remap(input_files, "genome", "index", loc="bg_loc")
align_input_file_meta_bg = remap(metadata, "genome", "index", loc="bg_loc")
if "fastq2" in input_files:
align_input_files_bg["fastq2"] = input_files["fastq2_bg"]
align_input_file_meta_bg["fastq2"] = metadata["fastq2_bg"]
logger.progress("BWA Aligner - Background", status="RUNNING")
bwa_bg_files, bwa_bg_meta = bwa.run(
align_input_files_bg,
align_input_file_meta_bg,
{"output": output_files["bam_bg"], "bai": output_files["bai_bg"]}
)
logger.progress("BWA Aligner - Background", status="DONE")
try:
output_files_generated["bam_bg"] = bwa_bg_files["bam"]
output_metadata["bam_bg"] = bwa_bg_meta["bam"]
tool_name = output_metadata['bam_bg'].meta_data['tool']
output_metadata['bam_bg'].meta_data['tool_description'] = tool_name
output_metadata['bam_bg'].meta_data['tool'] = "process_chipseq"
output_files_generated["bai_bg"] = bwa_bg_files["bai"]
output_metadata["bai_bg"] = bwa_bg_meta["bai"]
tool_name = output_metadata['bai_bg'].meta_data['tool']
output_metadata['bai_bg'].meta_data['tool_description'] = tool_name
output_metadata['bai_bg'].meta_data['tool'] = "process_chipseq"
except KeyError:
logger.fatal("Background BWA aligner failed")
# Filter the bams
b3f = biobambam(self.configuration)
logger.progress("BioBamBam", status="RUNNING")
b3f_files, b3f_meta = b3f.run(
{"input": bwa_files['bam']},
{"input": bwa_meta['bam']},
{"output": output_files["filtered"], "bai": output_files["filtered_bai"]}
)
logger.progress("BioBamBam", status="DONE")
try:
output_files_generated["filtered"] = b3f_files["bam"]
output_metadata["filtered"] = b3f_meta["bam"]
tool_name = output_metadata['filtered'].meta_data['tool']
output_metadata['filtered'].meta_data['tool_description'] = tool_name
output_metadata['filtered'].meta_data['tool'] = "process_chipseq"
output_files_generated["filtered_bai"] = b3f_files["bai"]
output_metadata["filtered_bai"] = b3f_meta["bai"]
tool_name = output_metadata['filtered_bai'].meta_data['tool']
output_metadata['filtered_bai'].meta_data['tool_description'] = tool_name
output_metadata['filtered_bai'].meta_data['tool'] = "process_chipseq"
except KeyError:
logger.fatal("BioBamBam filtering failed")
if "bg_loc" in input_files:
# Filter background aligned files
logger.progress("BioBamBam Background", status="RUNNING")
b3f_bg_files, b3f_bg_meta = b3f.run(
{"input": bwa_bg_files['bam']},
{"input": bwa_bg_meta['bam']},
{"output": output_files["filtered_bg"], "bai": output_files["filtered_bai_bg"]}
)
logger.progress("BioBamBam Background", status="DONE")
try:
output_files_generated["filtered_bg"] = b3f_bg_files["bam"]
output_metadata["filtered_bg"] = b3f_bg_meta["bam"]
tool_name = output_metadata['filtered_bg'].meta_data['tool']
output_metadata['filtered_bg'].meta_data['tool_description'] = tool_name
output_metadata['filtered_bg'].meta_data['tool'] = "process_chipseq"
output_files_generated["filtered_bai_bg"] = b3f_bg_files["bai"]
output_metadata["filtered_bai_bg"] = b3f_bg_meta["bai"]
tool_name = output_metadata['filtered_bai_bg'].meta_data['tool']
output_metadata['filtered_bai_bg'].meta_data['tool_description'] = tool_name
output_metadata['filtered_bai_bg'].meta_data['tool'] = "process_chipseq"
except KeyError:
logger.fatal("Background BioBamBam filtering failed")
# MACS2 to call peaks
# Duplicates have already been filtered so MACS2 does not need to due
# any further filtering
self.configuration["macs_keep-dup_param"] = "all"
macs_caller = macs2(self.configuration)
macs_inputs = {"bam": output_files_generated["filtered"]}
macs_metadt = {"bam": output_metadata['filtered']}
if "bg_loc" in input_files:
macs_inputs["bam_bg"] = output_files_generated["filtered_bg"]
macs_metadt["bam_bg"] = output_metadata['filtered_bg']
logger.progress("MACS2", status="RUNNING")
m_results_files, m_results_meta = macs_caller.run(
macs_inputs, macs_metadt,
# Outputs of the final step may match workflow outputs;
# Extra entries in output_files will be disregarded.
remap(
output_files,
'narrow_peak', 'summits', 'broad_peak', 'gapped_peak')
)
logger.progress("MACS2", status="DONE")
if not m_results_meta:
logger.fatal("MACS2 peak calling failed")
if 'narrow_peak' in m_results_meta:
output_files_generated['narrow_peak'] = m_results_files['narrow_peak']
output_metadata['narrow_peak'] = m_results_meta['narrow_peak']
tool_name = output_metadata['narrow_peak'].meta_data['tool']
output_metadata['narrow_peak'].meta_data['tool_description'] = tool_name
output_metadata['narrow_peak'].meta_data['tool'] = "process_chipseq"
if 'summits' in m_results_meta:
output_files_generated['summits'] = m_results_files['summits']
output_metadata['summits'] = m_results_meta['summits']
tool_name = output_metadata['summits'].meta_data['tool']
output_metadata['summits'].meta_data['tool_description'] = tool_name
output_metadata['summits'].meta_data['tool'] = "process_chipseq"
if 'broad_peak' in m_results_meta:
output_files_generated['broad_peak'] = m_results_files['broad_peak']
output_metadata['broad_peak'] = m_results_meta['broad_peak']
tool_name = output_metadata['broad_peak'].meta_data['tool']
output_metadata['broad_peak'].meta_data['tool_description'] = tool_name
output_metadata['broad_peak'].meta_data['tool'] = "process_chipseq"
if 'gapped_peak' in m_results_meta:
output_files_generated['gapped_peak'] = m_results_files['gapped_peak']
output_metadata['gapped_peak'] = m_results_meta['gapped_peak']
tool_name = output_metadata['gapped_peak'].meta_data['tool']
output_metadata['gapped_peak'].meta_data['tool_description'] = tool_name
output_metadata['gapped_peak'].meta_data['tool'] = "process_chipseq"
if 'control_lambda' in m_results_meta:
output_files_generated['control_lambda'] = m_results_files['control_lambda']
output_metadata['control_lambda'] = m_results_meta['control_lambda']
tool_name = output_metadata['control_lambda'].meta_data['tool']
output_metadata['control_lambda'].meta_data['tool_description'] = tool_name
output_metadata['control_lambda'].meta_data['tool'] = "process_chipseq"
if 'treat_pileup' in m_results_meta:
output_files_generated['treat_pileup'] = m_results_files['treat_pileup']
output_metadata['treat_pileup'] = m_results_meta['treat_pileup']
tool_name = output_metadata['treat_pileup'].meta_data['tool']
output_metadata['treat_pileup'].meta_data['tool_description'] = tool_name
output_metadata['treat_pileup'].meta_data['tool'] = "process_chipseq"
return output_files_generated, output_metadata
# ------------------------------------------------------------------------------
def main_json(config, in_metadata, out_metadata):
"""
Alternative main function
-------------
This function launches the app using configuration written in
two json files: config.json and input_metadata.json.
"""
# 1. Instantiate and launch the App
print("1. Instantiate and launch the App")
from apps.jsonapp import JSONApp
app = JSONApp()
result = app.launch(process_chipseq,
config,
in_metadata,
out_metadata)
# 2. The App has finished
print("2. Execution finished; see " + out_metadata)
print(result)
return result
# ------------------------------------------------------------------------------
if __name__ == "__main__":
# Set up the command line parameters
PARSER = argparse.ArgumentParser(description="ChIP-seq peak calling")
PARSER.add_argument(
"--config", help="Configuration file")
PARSER.add_argument(
"--in_metadata", help="Location of input metadata file")
PARSER.add_argument(
"--out_metadata", help="Location of output metadata file")
PARSER.add_argument(
"--local", action="store_const", const=True, default=False)
# Get the matching parameters from the command line
ARGS = PARSER.parse_args()
CONFIG = ARGS.config
IN_METADATA = ARGS.in_metadata
OUT_METADATA = ARGS.out_metadata
LOCAL = ARGS.local
if LOCAL:
import sys
sys._run_from_cmdl = True # pylint: disable=protected-access
RESULTS = main_json(CONFIG, IN_METADATA, OUT_METADATA)
print(RESULTS)