-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsensor_client.py
76 lines (62 loc) · 2.19 KB
/
sensor_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import asyncore
import logging
import socket
import struct
from threading import Thread
log = logging.getLogger(__name__)
class SensorClient(Thread, asyncore.dispatcher):
buffer_size = 1024
data = None
def __init__(self, server, server_port=5555, callback_objects=()):
Thread.__init__(self)
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((server, server_port))
self.callback = [i.callback for i in callback_objects]
def run(self):
asyncore.loop()
def handle_read(self):
self.on_data(self.recv(self.buffer_size))
def on_data(self, data):
self.data = self.decode_pos(data)
if self.data:
for callback in self.callback:
try:
callback(self.data)
except Exception as e:
log.exception(e)
@staticmethod
def sensor_31(data):
# empty = struct.unpack('b4b4b4b', data[:13])
dt = struct.unpack("3f", data[13:25])
speed = struct.unpack("6b", data[-6:])
return {"data": dt, "speed": speed}
@staticmethod
def sensor_53(data):
crc, _, trigger = struct.unpack("3b", data[:3])
speed = struct.unpack("2b", data[3:5])
axis_xy = struct.unpack("2f", data[5:13])
euler_data = struct.unpack("3f", data[13:25])
quaternion = struct.unpack("4f", data[25:41])
accel = struct.unpack("3f", data[41:])
return {
"trigger": trigger,
"speed": speed,
"axisXY": axis_xy,
"eulerData": euler_data,
"quaternion": quaternion,
"accel": accel,
}
def decode_pos(self, data):
data_len = len(data)
if not data_len % 53:
return self.sensor_53(data[-53:])
elif not data_len % 31:
return self.sensor_31(data[-31:])
else:
log.warning("Unknown sensor data len: %i", data_len)
@staticmethod
def split_list(lst, group_len):
data_len = len(lst)
kol_in_group = data_len // group_len
return [lst[i : i + kol_in_group] for i in range(0, data_len, kol_in_group)]