-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodule_mp_tempo_main.F90
3415 lines (3110 loc) · 148 KB
/
module_mp_tempo_main.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
! 1D TEMPO microphysics scheme
!=================================================================================================================
module module_mp_tempo_main
use module_mp_tempo_params
use module_mp_tempo_utils, only: rslf, rsif
#if defined(mpas)
use mpas_kind_types, only: wp => RKIND, sp => R4KIND, dp => R8KIND
#elif defined(standalone)
use machine, only: wp => kind_phys, sp => kind_sngl_prec, dp => kind_dbl_prec
#else
use machine, only: wp => kind_phys, sp => kind_sngl_prec, dp => kind_dbl_prec
#define ccpp_default 1
#endif
implicit none
contains
!=================================================================================================================
! This subroutine computes the moisture tendencies of water vapor, cloud droplets, rain, cloud ice (pristine),
! snow, and graupel. Previously this code was based on Reisner et al (1998), but few of those pieces remain.
! A complete description is now found in Thompson et al. (2004, 2008), Thompson and Eidhammer (2014),
! and Jensen et al. (2023).
subroutine mp_tempo_main(qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, qb1d, ni1d, nr1d, nc1d, ng1d, &
nwfa1d, nifa1d, t1d, p1d, w1d, dzq, pptrain, pptsnow, pptgraul, pptice, &
#if defined(mpas)
rainprod, evapprod, &
#endif
#if defined(ccpp_default)
! Extended diagnostics, most arrays only
! allocated if ext_diag flag is .true.
ext_diag, sedi_semi, &
prw_vcdc1, prw_vcde1, &
tpri_inu1, tpri_ide1_d, tpri_ide1_s, tprs_ide1, &
tprs_sde1_d, tprs_sde1_s, &
tprg_gde1_d, tprg_gde1_s, tpri_iha1, tpri_wfz1, &
tpri_rfz1, tprg_rfz1, tprs_scw1, tprg_scw1,&
tprg_rcs1, tprs_rcs1, tprr_rci1, &
tprg_rcg1, tprw_vcd1_c, &
tprw_vcd1_e, tprr_sml1, tprr_gml1, tprr_rcg1, &
tprr_rcs1, tprv_rev1, &
tten1, qvten1, qrten1, qsten1, &
qgten1, qiten1, niten1, nrten1, ncten1, qcten1, &
#endif
decfl, pfil1, pfll1, &
lsml, rand1, rand2, rand3, &
kts, kte, dt, ii, jj, &
configs)
#if defined(ccpp_default) && defined (MPI)
use mpi_f08
#endif
! Subroutine arguments
integer, intent(in) :: kts, kte, ii, jj
real(wp), dimension(kts:kte), intent(inout) :: qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, qb1d, &
ni1d, nr1d, nc1d, ng1d, nwfa1d, nifa1d, t1d
real(wp), dimension(kts:kte), intent(in) :: p1d, w1d, dzq
real(wp), intent(inout) :: pptrain, pptsnow, pptgraul, pptice
real(wp), intent(in) :: dt
type(ty_tempo_cfg), intent(in) :: configs
integer, intent(in), optional :: lsml
real(wp), intent(in), optional :: rand1, rand2, rand3
real(wp), dimension(kts:kte), intent(out), optional :: pfil1, pfll1
integer, intent(in), optional :: decfl
#if defined(ccpp_default)
! Extended diagnostics, most arrays only allocated if ext_diag is true
logical, intent(in) :: ext_diag
logical, intent(in) :: sedi_semi
real(wp), optional, dimension(:), intent(out) :: &
prw_vcdc1, &
prw_vcde1, tpri_inu1, tpri_ide1_d, &
tpri_ide1_s, tprs_ide1, &
tprs_sde1_d, tprs_sde1_s, tprg_gde1_d, &
tprg_gde1_s, tpri_iha1, tpri_wfz1, &
tpri_rfz1, tprg_rfz1, tprs_scw1, tprg_scw1, &
tprg_rcs1, tprs_rcs1, &
tprr_rci1, tprg_rcg1, &
tprw_vcd1_c, tprw_vcd1_e, tprr_sml1, &
tprr_gml1, tprr_rcg1, &
tprr_rcs1, tprv_rev1, tten1, qvten1, &
qrten1, qsten1, qgten1, qiten1, niten1, &
nrten1, ncten1, qcten1
#endif
#if defined(mpas)
real(wp), dimension(kts:kte), intent(inout) :: rainprod, evapprod
#endif
!=================================================================================================================
! Local variables
real(wp), dimension(kts:kte) :: tten, qvten, qcten, qiten, qrten, &
qsten, qgten, qbten, niten, nrten, ncten, ngten, nwfaten, nifaten
real(dp), dimension(kts:kte) :: prw_vcd
real(dp), dimension(kts:kte) :: pnc_wcd, pnc_wau, pnc_rcw, pnc_scw, pnc_gcw
real(dp), dimension(kts:kte) :: pna_rca, pna_sca, pna_gca, pnd_rcd, pnd_scd, pnd_gcd
real(dp), dimension(kts:kte) :: prr_wau, prr_rcw, prr_rcs, &
prr_rcg, prr_sml, prr_gml, &
prr_rci, prv_rev, &
pnr_wau, pnr_rcs, pnr_rcg, &
pnr_rci, pnr_sml, pnr_gml, &
pnr_rev, pnr_rcr, pnr_rfz
real(dp), dimension(kts:kte) :: pri_inu, pni_inu, pri_ihm, &
pni_ihm, pri_wfz, pni_wfz, &
pri_rfz, pni_rfz, pri_ide, &
pni_ide, pri_rci, pni_rci, &
pni_sci, pni_iau, pri_iha, pni_iha
real(dp), dimension(kts:kte) :: prs_iau, prs_sci, prs_rcs, prs_scw, prs_sde, prs_ihm, prs_ide
real(dp), dimension(kts:kte) :: prg_scw, prg_rfz, prg_gde, &
prg_gcw, prg_rci, prg_rcs, prg_rcg, prg_ihm, &
png_rcs, png_rcg, png_scw, png_gde, &
pbg_scw, pbg_rfz, pbg_gcw, pbg_rci, pbg_rcs, pbg_rcg, &
pbg_sml, pbg_gml
real(dp), parameter :: zerod0 = 0.0d0
real(wp), dimension(kts:kte) :: pfll, pfil, pdummy
real(wp) :: dtcfl, rainsfc, graulsfc, orhodt
integer :: niter
real(wp), dimension(kts:kte) :: rr_tmp, nr_tmp, rg_tmp
real(wp), dimension(kts:kte) :: temp, twet, pres, qv
real(wp), dimension(kts:kte) :: rc, ri, rr, rs, rg, rb
real(wp), dimension(kts:kte) :: ni, nr, nc, ns, ng, nwfa, nifa
real(wp), dimension(kts:kte) :: rho, rhof, rhof2
real(wp), dimension(kts:kte) :: qvs, qvsi, delqvs
real(wp), dimension(kts:kte) :: satw, sati, ssatw, ssati
real(wp), dimension(kts:kte) :: diffu, visco, vsc2, &
tcond, lvap, ocp, lvt2
real(dp), dimension(kts:kte) :: ilamr, ilamg, n0_r, n0_g
real(dp) :: n0_melt
real(wp), dimension(kts:kte) :: mvd_r, mvd_c, mvd_g
real(wp), dimension(kts:kte) :: smob, smo2, smo1, smo0, &
smoc, smod, smoe, smof, smog
real(wp), dimension(kts:kte) :: sed_r, sed_s, sed_g, sed_i, sed_n, sed_c, sed_b
real(wp) :: rgvm, delta_tp, orho, lfus2
real(wp), dimension(5):: onstep
real(dp) :: n0_exp, n0_min, lam_exp, lamc, lamr, lamg
real(dp) :: lami, ilami, ilamc
real(wp) :: xdc, dc_b, dc_g, xdi, xdr, xds, xdg, ds_m, dg_m
real(dp) :: dr_star, dc_star
real(wp) :: zeta1, zeta, taud, tau
real(wp) :: stoke_r, stoke_s, stoke_g, stoke_i
real(wp) :: vti, vtr, vts, vtg, vtc
real(wp) :: xrho_g, afall, vtg1, vtg2
real(wp) :: bfall = 3*b_coeff - 1
real(wp), dimension(kts:kte+1) :: vtik, vtnik, vtrk, vtnrk, vtsk, vtgk, vtngk, vtck, vtnck
real(wp), dimension(kts:kte) :: vts_boost
real(wp) :: m0, slam1, slam2
real(wp) :: mrat, ils1, ils2, t1_vts, t2_vts, t3_vts, t4_vts, c_snow
real(wp) :: a_, b_, loga_, a1, a2, tf
real(wp) :: tempc, tc0, r_mvd1, r_mvd2, xkrat
real(wp) :: dew_t, tlcl, the
real(wp) :: xnc, xri, xni, xmi, oxmi, xrc, xrr, xnr, xrg, xng, xrb
real(wp) :: xsat, rate_max, sump, ratio
real(wp) :: clap, fcd, dfcd
real(wp) :: otemp, rvs, rvs_p, rvs_pp, gamsc, alphsc, t1_evap, t1_subl
real(wp) :: r_frac, g_frac, const_Ri, rime_dens
real(wp) :: Ef_rw, Ef_sw, Ef_gw, Ef_rr
real(wp) :: Ef_ra, Ef_sa, Ef_ga
real(wp) :: dtsave, odts, odt, odzq, hgt_agl, SR
real(wp) :: xslw1, ygra1, zans1, eva_factor
real(wp) :: melt_f, rand
integer :: i, k, k2, n, nn, nstep, k_0, kbot, IT, iexfrq, k_melting
integer, dimension(5) :: ksed1
integer :: nir, nis, nig, nii, nic, niin
integer :: idx_tc, idx_t, idx_s, idx_g1, idx_g, idx_r1, idx_r, &
idx_i1, idx_i, idx_c, idx, idx_d, idx_n, idx_in
integer, dimension(kts:kte) :: idx_bg, idx_table
logical :: melti, no_micro
logical, dimension(kts:kte) :: l_qc, l_qi, l_qr, l_qs, l_qg
logical :: debug_flag
character*256 :: mp_debug
integer :: nu_c, decfl_
!=================================================================================================================
debug_flag = .false.
no_micro = .true.
dtsave = dt
odt = 1./dt
odts = 1./dtsave
iexfrq = 1
rand = 0.0
decfl_ = 10
if (present(decfl)) decfl_ = decfl
#if defined(ccpp_default)
! Transition value of coefficient matching at crossover from cloud ice to snow
av_i = av_s * D0s ** (bv_s - bv_i)
#endif
!=================================================================================================================
! Source/sink terms. First 2 chars: "pr" represents source/sink of
! mass while "pn" represents source/sink of number. Next char is one
! of "v" for water vapor, "r" for rain, "i" for cloud ice, "w" for
! cloud water, "s" for snow, and "g" for graupel. Next chars
! represent processes: "de" for sublimation/deposition, "ev" for
! evaporation, "fz" for freezing, "ml" for melting, "au" for
! autoconversion, "nu" for ice nucleation, "hm" for Hallet/Mossop
! secondary ice production, and "c" for collection followed by the
! character for the species being collected. ALL of these terms are
! positive (except for deposition/sublimation terms which can switch
! signs based on super/subsaturation) and are treated as negatives
! where necessary in the tendency equations.
!=================================================================================================================
! TODO: Put these in derived data type and add initialization subroutine
do k = kts, kte
tten(k) = 0.
qvten(k) = 0.
qcten(k) = 0.
qiten(k) = 0.
qrten(k) = 0.
qsten(k) = 0.
qgten(k) = 0.
ngten(k) = 0.
qbten(k) = 0.
niten(k) = 0.
nrten(k) = 0.
ncten(k) = 0.
nwfaten(k) = 0.
nifaten(k) = 0.
prw_vcd(k) = 0.
pnc_wcd(k) = 0.
pnc_wau(k) = 0.
pnc_rcw(k) = 0.
pnc_scw(k) = 0.
pnc_gcw(k) = 0.
prv_rev(k) = 0.
prr_wau(k) = 0.
prr_rcw(k) = 0.
prr_rcs(k) = 0.
prr_rcg(k) = 0.
prr_sml(k) = 0.
prr_gml(k) = 0.
prr_rci(k) = 0.
pnr_wau(k) = 0.
pnr_rcs(k) = 0.
pnr_rcg(k) = 0.
pnr_rci(k) = 0.
pnr_sml(k) = 0.
pnr_gml(k) = 0.
pnr_rev(k) = 0.
pnr_rcr(k) = 0.
pnr_rfz(k) = 0.
pri_inu(k) = 0.
pni_inu(k) = 0.
pri_ihm(k) = 0.
pni_ihm(k) = 0.
pri_wfz(k) = 0.
pni_wfz(k) = 0.
pri_rfz(k) = 0.
pni_rfz(k) = 0.
pri_ide(k) = 0.
pni_ide(k) = 0.
pri_rci(k) = 0.
pni_rci(k) = 0.
pni_sci(k) = 0.
pni_iau(k) = 0.
pri_iha(k) = 0.
pni_iha(k) = 0.
prs_iau(k) = 0.
prs_sci(k) = 0.
prs_rcs(k) = 0.
prs_scw(k) = 0.
prs_sde(k) = 0.
prs_ihm(k) = 0.
prs_ide(k) = 0.
prg_scw(k) = 0.
prg_rfz(k) = 0.
prg_gde(k) = 0.
prg_gcw(k) = 0.
prg_rci(k) = 0.
prg_rcs(k) = 0.
prg_rcg(k) = 0.
prg_ihm(k) = 0.
! new source/sink terms for 3-moment graupel
png_scw(k) = 0.
png_rcs(k) = 0.
png_rcg(k) = 0.
png_gde(k) = 0.
pbg_scw(k) = 0.
pbg_rfz(k) = 0.
pbg_gcw(k) = 0.
pbg_rci(k) = 0.
pbg_rcs(k) = 0.
pbg_rcg(k) = 0.
pbg_sml(k) = 0.
pbg_gml(k) = 0.
pna_rca(k) = 0.
pna_sca(k) = 0.
pna_gca(k) = 0.
pnd_rcd(k) = 0.
pnd_scd(k) = 0.
pnd_gcd(k) = 0.
if (present(pfil1)) pfil1(k) = 0.
if (present(pfll1)) pfll1(k) = 0.
pfil(k) = 0.
pfll(k) = 0.
pdummy(k) = 0.
enddo
#if defined(mpas)
do k = kts, kte
rainprod(k) = 0.
evapprod(k) = 0.
enddo
#endif
#if defined(ccpp_default)
!Diagnostics
if (ext_diag) then
do k = kts, kte
!vtsk1(k) = 0.
!txrc1(k) = 0.
!txri1(k) = 0.
prw_vcdc1(k) = 0.
prw_vcde1(k) = 0.
tpri_inu1(k) = 0.
tpri_ide1_d(k) = 0.
tpri_ide1_s(k) = 0.
tprs_ide1(k) = 0.
tprs_sde1_d(k) = 0.
tprs_sde1_s(k) = 0.
tprg_gde1_d(k) = 0.
tprg_gde1_s(k) = 0.
tpri_iha1(k) = 0.
tpri_wfz1(k) = 0.
tpri_rfz1(k) = 0.
tprg_rfz1(k) = 0.
tprg_scw1(k) = 0.
tprs_scw1(k) = 0.
tprg_rcs1(k) = 0.
tprs_rcs1(k) = 0.
tprr_rci1(k) = 0.
tprg_rcg1(k) = 0.
tprw_vcd1_c(k) = 0.
tprw_vcd1_e(k) = 0.
tprr_sml1(k) = 0.
tprr_gml1(k) = 0.
tprr_rcg1(k) = 0.
tprr_rcs1(k) = 0.
tprv_rev1(k) = 0.
tten1(k) = 0.
qvten1(k) = 0.
qrten1(k) = 0.
qsten1(k) = 0.
qgten1(k) = 0.
qiten1(k) = 0.
niten1(k) = 0.
nrten1(k) = 0.
ncten1(k) = 0.
qcten1(k) = 0.
enddo
endif
#endif
!..Bug fix (2016Jun15), prevent use of uninitialized value(s) of snow moments.
do k = kts, kte
smo0(k) = 0.
smo1(k) = 0.
smo2(k) = 0.
smob(k) = 0.
smoc(k) = 0.
smod(k) = 0.
smoe(k) = 0.
smof(k) = 0.
smog(k) = 0.
ns(k) = 0.
mvd_r(k) = 0.
mvd_c(k) = 0.
enddo
!=================================================================================================================
! Convert microphysics variables to concentrations (kg / m^3 and # / m^3)
do k = kts, kte
temp(k) = t1d(k)
qv(k) = max(min_qv, qv1d(k))
pres(k) = p1d(k)
rho(k) = RoverRv*pres(k)/(r*temp(k)*(qv(k)+RoverRv))
! CCPP version has rho(k) multiplier for min and max
! nwfa(k) = max(11.1e6, min(9999.e6, nwfa1d(k)*rho(k)))
! nifa(k) = max(nain1*0.01, min(9999.e6, nifa1d(k)*rho(k)))
nwfa(k) = max(nwfa_default*rho(k), min(aero_max*rho(k), nwfa1d(k)*rho(k)))
nifa(k) = max(nifa_default*rho(k), min(aero_max*rho(k), nifa1d(k)*rho(k)))
! From CCPP version
mvd_r(k) = D0r
mvd_c(k) = D0c
if (qc1d(k) .gt. R1) then
no_micro = .false.
rc(k) = qc1d(k)*rho(k)
nc(k) = max(2., min(nc1d(k)*rho(k), nt_c_max))
l_qc(k) = .true.
if (nc(k).gt.10000.e6) then
nu_c = 2
elseif (nc(k).lt.100.) then
nu_c = 15
else
nu_c = nint(nu_c_scale/nc(k)) + 2
rand = 0.0
if (present(rand2)) then
rand = rand2
endif
nu_c = max(2, min(nu_c+nint(rand), 15))
endif
lamc = (nc(k)*am_r*ccg(2,nu_c)*ocg1(nu_c)/rc(k))**obmr
xDc = (bm_r + nu_c + 1.) / lamc
if (xDc.lt. D0c) then
lamc = cce(2,nu_c)/D0c
elseif (xDc.gt. D0r*2.) then
lamc = cce(2,nu_c)/(D0r*2.)
endif
nc(k) = min(real(nt_c_max, kind=dp), ccg(1,nu_c)*ocg2(nu_c)*rc(k) / am_r*lamc**bm_r)
! CCPP version has different values of Nt_c for land/ocean
if (.not.(configs%aerosol_aware .or. merra2_aerosol_aware)) then
nc(k) = Nt_c
if (present(lsml)) then
if (lsml == 1) then
nc(k) = Nt_c_l
else
nc(k) = Nt_c_o
endif
endif
endif
else
qc1d(k) = 0.0
nc1d(k) = 0.0
rc(k) = R1
nc(k) = 2.
L_qc(k) = .false.
endif
if (qi1d(k) .gt. R1) then
no_micro = .false.
ri(k) = qi1d(k)*rho(k)
ni(k) = max(r2, ni1d(k)*rho(k))
if (ni(k).le. r2) then
lami = cie(2)/5.e-6
ni(k) = min(max_ni, cig(1)*oig2*ri(k)/am_i*lami**bm_i)
endif
L_qi(k) = .true.
lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi
ilami = 1./lami
xDi = (bm_i + mu_i + 1.) * ilami
if (xDi.lt. 5.E-6) then
lami = cie(2)/5.E-6
ni(k) = min(max_ni, cig(1)*oig2*ri(k)/am_i*lami**bm_i)
elseif (xDi.gt. 300.E-6) then
lami = cie(2)/300.E-6
ni(k) = cig(1)*oig2*ri(k)/am_i*lami**bm_i
endif
else
qi1d(k) = 0.0
ni1d(k) = 0.0
ri(k) = R1
ni(k) = R2
L_qi(k) = .false.
endif
if (qr1d(k) .gt. R1) then
no_micro = .false.
rr(k) = qr1d(k)*rho(k)
nr(k) = max(R2, nr1d(k)*rho(k))
if (nr(k).le. R2) then
mvd_r(k) = 1.0E-3
lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
endif
L_qr(k) = .true.
lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
if (mvd_r(k) .gt. 2.5E-3) then
mvd_r(k) = 2.5E-3
lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
elseif (mvd_r(k) .lt. D0r*0.75) then
mvd_r(k) = D0r*0.75
lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
endif
else
qr1d(k) = 0.0
nr1d(k) = 0.0
rr(k) = R1
nr(k) = R2
L_qr(k) = .false.
endif
if (qs1d(k) .gt. R1) then
no_micro = .false.
rs(k) = qs1d(k)*rho(k)
L_qs(k) = .true.
else
qs1d(k) = 0.0
rs(k) = R1
L_qs(k) = .false.
endif
if (qg1d(k) .gt. R1) then
no_micro = .false.
L_qg(k) = .true.
rg(k) = qg1d(k)*rho(k)
ng(k) = max(r2, ng1d(k)*rho(k))
rb(k) = max(qg1d(k)/rho_g(nrhg), qb1d(k))
rb(k) = min(qg1d(k)/rho_g(1), rb(k))
qb1d(k) = rb(k)
idx_bg(k) = max(1,min(nint(qg1d(k)/rb(k) *0.01)+1,nrhg))
idx_table(k) = idx_bg(k)
if (ng(k).le. R2) then
mvd_g(k) = 1.5E-3
lamg = (3.0 + mu_g + 0.672) / mvd_g(k)
ng(k) = cgg(2,1)*ogg3*rg(k)*lamg**bm_g / am_g(idx_bg(k))
endif
lamg = (am_g(idx_bg(k))*cgg(3,1)*ogg2*ng(k)/rg(k))**obmg
mvd_g(k) = (3.0 + mu_g + 0.672) / lamg
if (mvd_g(k) .gt. 25.4E-3) then
mvd_g(k) = 25.4E-3
lamg = (3.0 + mu_g + 0.672) / mvd_g(k)
ng(k) = cgg(2,1)*ogg3*rg(k)*lamg**bm_g / am_g(idx_bg(k))
elseif (mvd_g(k) .lt. D0r) then
mvd_g(k) = D0r
lamg = (3.0 + mu_g + 0.672) / mvd_g(k)
ng(k) = cgg(2,1)*ogg3*rg(k)*lamg**bm_g / am_g(idx_bg(k))
endif
else
qg1d(k) = 0.0
ng1d(k) = 0.0
qb1d(k) = 0.0
idx_bg(k) = idx_bg1
idx_table(k) = idx_bg(k)
rg(k) = R1
ng(k) = R2
rb(k) = R1/rho(k)/rho_g(NRHG)
L_qg(k) = .false.
endif
if (.not. configs%hail_aware) then
idx_bg(k) = idx_bg1
idx_table(k) = idx_bg(k)
! If dimNRHG = 1, set idx_table(k) = 1,
! otherwise idx_bg1
if(.not. using_hail_aware_table) then
idx_table(k) = 1
endif
endif
enddo
! if (debug_flag) then
! write(mp_debug,*) 'DEBUG-VERBOSE at (i,j) ', ii, ', ', jj
! CALL wrf_debug(550, mp_debug)
! do k = kts, kte
! write(mp_debug, '(a,i3,f8.2,1x,f7.2,1x, 11(1x,e13.6))') &
! & 'VERBOSE: ', k, pres(k)*0.01, temp(k)-273.15, qv(k), rc(k), rr(k), ri(k), rs(k), rg(k), nc(k), nr(k), ni(k), nwfa(k), nifa(k)
! CALL wrf_debug(550, mp_debug)
! enddo
! endif
!=================================================================================================================
! Derive various thermodynamic variables frequently used.
! Saturation vapor pressure (mixing ratio) over liquid/ice comes from
! Flatau et al. 1992; enthalpy (latent heat) of vaporization from
! Bohren & Albrecht 1998; others from Pruppacher & Klett 1978.
do k = kts, kte
tempc = temp(k) - 273.15
rhof(k) = sqrt(rho_not/rho(k))
rhof2(k) = sqrt(rhof(k))
qvs(k) = rslf(pres(k), temp(k))
delqvs(k) = max(0.0, rslf(pres(k), 273.15)-qv(k))
if (tempc .le. 0.0) then
qvsi(k) = rsif(pres(k), temp(k))
else
qvsi(k) = qvs(k)
endif
satw(k) = qv(k)/qvs(k)
sati(k) = qv(k)/qvsi(k)
ssatw(k) = satw(k) - 1.
ssati(k) = sati(k) - 1.
if (abs(ssatw(k)).lt. eps) ssatw(k) = 0.0
if (abs(ssati(k)).lt. eps) ssati(k) = 0.0
if (no_micro .and. ssati(k).gt. 0.0) no_micro = .false.
diffu(k) = 2.11e-5*(temp(k)/273.15)**1.94 * (101325./pres(k))
if (tempc .ge. 0.0) then
visco(k) = (1.718+0.0049*tempc)*1.0e-5
else
visco(k) = (1.718+0.0049*tempc-1.2e-5*tempc*tempc)*1.0e-5
endif
ocp(k) = 1./(cp2*(1.+0.887*qv(k)))
vsc2(k) = sqrt(rho(k)/visco(k))
lvap(k) = lvap0 + (2106.0 - 4218.0)*tempc
tcond(k) = (5.69 + 0.0168*tempc)*1.0e-5 * 418.936
enddo
!=================================================================================================================
!..If no existing hydrometeor species and no chance to initiate ice or
!.. condense cloud water, just exit quickly!
if (no_micro) return
!..Calculate y-intercept, slope, and useful moments for snow.
if (.not. iiwarm) then
do k = kts, kte
if (.not. L_qs(k)) CYCLE
tc0 = min(-0.1, temp(k)-273.15)
smob(k) = rs(k)*oams
!..All other moments based on reference, 2nd moment. If bm_s.ne.2,
!.. then we must compute actual 2nd moment and use as reference.
if (bm_s.gt.(2.0-1.e-3) .and. bm_s.lt.(2.0+1.e-3)) then
smo2(k) = smob(k)
else
loga_ = sa(1) + sa(2)*tc0 + sa(3)*bm_s &
+ sa(4)*tc0*bm_s + sa(5)*tc0*tc0 &
+ sa(6)*bm_s*bm_s + sa(7)*tc0*tc0*bm_s &
+ sa(8)*tc0*bm_s*bm_s + sa(9)*tc0*tc0*tc0 &
+ sa(10)*bm_s*bm_s*bm_s
a_ = 10.0**loga_
b_ = sb(1) + sb(2)*tc0 + sb(3)*bm_s &
+ sb(4)*tc0*bm_s + sb(5)*tc0*tc0 &
+ sb(6)*bm_s*bm_s + sb(7)*tc0*tc0*bm_s &
+ sb(8)*tc0*bm_s*bm_s + sb(9)*tc0*tc0*tc0 &
+ sb(10)*bm_s*bm_s*bm_s
smo2(k) = (smob(k)/a_)**(1./b_)
endif
!..Calculate 0th moment. Represents snow number concentration.
loga_ = sa(1) + sa(2)*tc0 + sa(5)*tc0*tc0 + sa(9)*tc0*tc0*tc0
a_ = 10.0**loga_
b_ = sb(1) + sb(2)*tc0 + sb(5)*tc0*tc0 + sb(9)*tc0*tc0*tc0
smo0(k) = a_ * smo2(k)**b_
!..Calculate 1st moment. Useful for depositional growth and melting.
loga_ = sa(1) + sa(2)*tc0 + sa(3) &
+ sa(4)*tc0 + sa(5)*tc0*tc0 &
+ sa(6) + sa(7)*tc0*tc0 &
+ sa(8)*tc0 + sa(9)*tc0*tc0*tc0 &
+ sa(10)
a_ = 10.0**loga_
b_ = sb(1)+ sb(2)*tc0 + sb(3) + sb(4)*tc0 &
+ sb(5)*tc0*tc0 + sb(6) &
+ sb(7)*tc0*tc0 + sb(8)*tc0 &
+ sb(9)*tc0*tc0*tc0 + sb(10)
smo1(k) = a_ * smo2(k)**b_
!..Calculate bm_s+1 (th) moment. Useful for diameter calcs.
loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(1) &
+ sa(4)*tc0*cse(1) + sa(5)*tc0*tc0 &
+ sa(6)*cse(1)*cse(1) + sa(7)*tc0*tc0*cse(1) &
+ sa(8)*tc0*cse(1)*cse(1) + sa(9)*tc0*tc0*tc0 &
+ sa(10)*cse(1)*cse(1)*cse(1)
a_ = 10.0**loga_
b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(1) + sb(4)*tc0*cse(1) &
+ sb(5)*tc0*tc0 + sb(6)*cse(1)*cse(1) &
+ sb(7)*tc0*tc0*cse(1) + sb(8)*tc0*cse(1)*cse(1) &
+ sb(9)*tc0*tc0*tc0 + sb(10)*cse(1)*cse(1)*cse(1)
smoc(k) = a_ * smo2(k)**b_
!..Calculate snow number concentration (explicit integral, not smo0)
M0 = smob(k)/smoc(k)
Mrat = smob(k)*M0*M0*M0
slam1 = M0 * Lam0
slam2 = M0 * Lam1
ns(k) = Mrat*Kap0/slam1 &
+ Mrat*Kap1*M0**mu_s*csg(15)/slam2**cse(15)
!..Calculate bv_s+2 (th) moment. Useful for riming.
loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(13) &
+ sa(4)*tc0*cse(13) + sa(5)*tc0*tc0 &
+ sa(6)*cse(13)*cse(13) + sa(7)*tc0*tc0*cse(13) &
+ sa(8)*tc0*cse(13)*cse(13) + sa(9)*tc0*tc0*tc0 &
+ sa(10)*cse(13)*cse(13)*cse(13)
a_ = 10.0**loga_
b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(13) + sb(4)*tc0*cse(13) &
+ sb(5)*tc0*tc0 + sb(6)*cse(13)*cse(13) &
+ sb(7)*tc0*tc0*cse(13) + sb(8)*tc0*cse(13)*cse(13) &
+ sb(9)*tc0*tc0*tc0 + sb(10)*cse(13)*cse(13)*cse(13)
smoe(k) = a_ * smo2(k)**b_
!..Calculate 1+(bv_s+1)/2 (th) moment. Useful for depositional growth.
loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(16) &
+ sa(4)*tc0*cse(16) + sa(5)*tc0*tc0 &
+ sa(6)*cse(16)*cse(16) + sa(7)*tc0*tc0*cse(16) &
+ sa(8)*tc0*cse(16)*cse(16) + sa(9)*tc0*tc0*tc0 &
+ sa(10)*cse(16)*cse(16)*cse(16)
a_ = 10.0**loga_
b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(16) + sb(4)*tc0*cse(16) &
+ sb(5)*tc0*tc0 + sb(6)*cse(16)*cse(16) &
+ sb(7)*tc0*tc0*cse(16) + sb(8)*tc0*cse(16)*cse(16) &
+ sb(9)*tc0*tc0*tc0 + sb(10)*cse(16)*cse(16)*cse(16)
smof(k) = a_ * smo2(k)**b_
!..Calculate bm_s + bv_s+2 (th) moment. Useful for riming into graupel.
loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(17) &
+ sa(4)*tc0*cse(17) + sa(5)*tc0*tc0 &
+ sa(6)*cse(17)*cse(17) + sa(7)*tc0*tc0*cse(17) &
+ sa(8)*tc0*cse(17)*cse(17) + sa(9)*tc0*tc0*tc0 &
+ sa(10)*cse(17)*cse(17)*cse(17)
a_ = 10.0**loga_
b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(17) + sb(4)*tc0*cse(17) &
+ sb(5)*tc0*tc0 + sb(6)*cse(17)*cse(17) &
+ sb(7)*tc0*tc0*cse(17) + sb(8)*tc0*cse(17)*cse(17) &
+ sb(9)*tc0*tc0*tc0 + sb(10)*cse(17)*cse(17)*cse(17)
smog(k) = a_ * smo2(k)**b_
enddo
!+---+-----------------------------------------------------------------+
!..Calculate y-intercept, slope values for graupel.
!+---+-----------------------------------------------------------------+
do k = kte, kts, -1
lamg = (am_g(idx_bg(k))*cgg(3,1)*ogg2*ng(k)/rg(k))**obmg
ilamg(k) = 1./lamg
N0_g(k) = ng(k)*ogg2*lamg**cge(2,1)
enddo
! do k = kte, kts, -1
! ygra1 = alog10(max(1.e-9, rg(k)))
! zans1 = 3.4 + 2./7.*(ygra1+8.) + rand1
! N0_exp = 10.**(zans1)
! N0_exp = max(dble(gonv_min), min(N0_exp, dble(gonv_max)))
! lam_exp = (N0_exp*am_g*cgg(1)/rg(k))**oge1
! lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg
! ilamg(k) = 1./lamg
! N0_g(k) = N0_exp/(cgg(2)*lam_exp) * lamg**cge(2)
! enddo
endif
!+---+-----------------------------------------------------------------+
!..Calculate y-intercept, slope values for rain.
!+---+-----------------------------------------------------------------+
do k = kte, kts, -1
lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
ilamr(k) = 1./lamr
mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
N0_r(k) = nr(k)*org2*lamr**cre(2)
enddo
!=================================================================================================================
!..Compute warm-rain process terms (except evap done later).
!+---+-----------------------------------------------------------------+
do k = kts, kte
!..Rain self-collection follows Seifert, 1994 and drop break-up
!.. follows Verlinde and Cotton, 1993. RAIN2M
if (L_qr(k) .and. mvd_r(k).gt. D0r) then
Ef_rr = max(-0.1, 1.0 - exp(2300.0*(mvd_r(k)-1950.0e-6)))
!!! Ef_rr = 1.0 - exp(2300.0*(mvd_r(k)-1950.0E-6))
pnr_rcr(k) = Ef_rr * 2.0*nr(k)*rr(k)
endif
mvd_c(k) = D0c
if (l_qc(k)) then
if (nc(k).gt.10000.e6) then
nu_c = 2
elseif (nc(k).lt.100.) then
nu_c = 15
else
nu_c = nint(nu_c_scale/nc(k)) + 2
rand = 0.0
if (present(rand2)) then
rand = rand2
endif
nu_c = max(2, min(nu_c+nint(rand), 15))
endif
xdc = max(D0c*1.e6, ((rc(k)/(am_r*nc(k)))**obmr) * 1.e6)
lamc = (nc(k)*am_r* ccg(2,nu_c) * ocg1(nu_c) / rc(k))**obmr
mvd_c(k) = (3.0+nu_c+0.672) / lamc
mvd_c(k) = max(d0c, min(mvd_c(k), d0r))
endif
!..Autoconversion follows Berry & Reinhardt (1974) with characteristic
!.. diameters correctly computed from gamma distrib of cloud droplets.
if (rc(k).gt. 0.01e-3) then
Dc_g = ((ccg(3,nu_c)*ocg2(nu_c))**obmr / lamc) * 1.E6
Dc_b = (xDc*xDc*xDc*Dc_g*Dc_g*Dc_g - xDc*xDc*xDc*xDc*xDc*xDc) &
**(1./6.)
zeta1 = 0.5*((6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4) &
+ abs(6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4))
zeta = 0.027*rc(k)*zeta1
taud = 0.5*((0.5*Dc_b - 7.5) + abs(0.5*Dc_b - 7.5)) + R1
tau = 3.72/(rc(k)*taud)
prr_wau(k) = zeta/tau
prr_wau(k) = min(real(rc(k)*odts, kind=dp), prr_wau(k))
pnr_wau(k) = prr_wau(k) / (am_r*nu_c*10.*D0r*D0r*D0r) ! RAIN2M
pnc_wau(k) = min(real(nc(k)*odts, kind=dp), prr_wau(k) / (am_r*mvd_c(k)*mvd_c(k)*mvd_c(k))) ! Qc2M
endif
!> - Rain collecting cloud water. In CE, assume Dc<<Dr and vtc=~0.
if (L_qr(k) .and. mvd_r(k).gt. D0r .and. mvd_c(k).gt. D0c) then
lamr = 1./ilamr(k)
idx = 1 + int(nbr*log(real(mvd_r(k)/Dr(1), kind=dp)) / log(real(Dr(nbr)/Dr(1), kind=dp)))
idx = min(idx, nbr)
Ef_rw = t_Efrw(idx, int(mvd_c(k)*1.E6))
prr_rcw(k) = rhof(k)*t1_qr_qc*Ef_rw*rc(k)*N0_r(k) &
*((lamr+fv_r)**(-cre(9)))
prr_rcw(k) = min(real(rc(k)*odts, kind=dp), prr_rcw(k))
pnc_rcw(k) = rhof(k)*t1_qr_qc*Ef_rw*nc(k)*N0_r(k) &
*((lamr+fv_r)**(-cre(9))) ! Qc2M
pnc_rcw(k) = min(real(nc(k)*odts, kind=dp), pnc_rcw(k))
endif
!> - Rain collecting aerosols, wet scavenging.
if (L_qr(k) .and. mvd_r(k).gt. D0r) then
Ef_ra = Eff_aero(mvd_r(k),0.04E-6,visco(k),rho(k),temp(k),'r')
lamr = 1./ilamr(k)
pna_rca(k) = rhof(k)*t1_qr_qc*Ef_ra*nwfa(k)*N0_r(k) &
*((lamr+fv_r)**(-cre(9)))
pna_rca(k) = min(real(nwfa(k)*odts, kind=dp), pna_rca(k))
Ef_ra = Eff_aero(mvd_r(k),0.8E-6,visco(k),rho(k),temp(k),'r')
pnd_rcd(k) = rhof(k)*t1_qr_qc*Ef_ra*nifa(k)*N0_r(k) &
*((lamr+fv_r)**(-cre(9)))
pnd_rcd(k) = min(real(nifa(k)*odts, kind=dp), pnd_rcd(k))
endif
enddo
!=================================================================================================================
!..Compute all frozen hydrometeor species' process terms.
!+---+-----------------------------------------------------------------+
if (.not. iiwarm) then
do k = kts, kte
vts_boost(k) = 1.0
xDs = 0.0
if (L_qs(k)) xDs = smoc(k) / smob(k)
! orho = 1./rho(k)
! if (L_qs(k)) then
! xDs = smoc(k) / smob(k)
! rho_s2 = max(rho_g(1), min(0.13/xDs, rho_i-100.))
! else
! xDs = 0.
! rho_s2 = 100.
! endif
!..Temperature lookup table indexes.
tempc = temp(k) - 273.15
idx_tc = max(1, min(nint(-tempc), 45) )
idx_t = int( (tempc-2.5)/5. ) - 1
idx_t = max(1, -idx_t)
idx_t = min(idx_t, ntb_t)
it = max(1, min(nint(-tempc), 31) )
!> - Cloud water lookup table index.
if (rc(k).gt. r_c(1)) then
nic = nint(log10(rc(k)))
do_loop_rc: do nn = nic-1, nic+1
n = nn
if ( (rc(k)/10.**nn).ge.1.0 .and. (rc(k)/10.**nn).lt.10.0 ) exit do_loop_rc
enddo do_loop_rc
idx_c = int(rc(k)/10.**n) + 10*(n-nic2) - (n-nic2)
idx_c = max(1, min(idx_c, ntb_c))
else
idx_c = 1
endif
!> - Cloud droplet number lookup table index.
idx_n = nint(1.0 + real(nbc, kind=wp) * log(real(nc(k)/t_Nc(1), kind=dp)) / nic1)
idx_n = max(1, min(idx_n, nbc))
!> - Cloud ice lookup table indexes.
if (ri(k).gt. r_i(1)) then
nii = nint(log10(ri(k)))
do_loop_ri: do nn = nii-1, nii+1
n = nn
if ( (ri(k)/10.**nn).ge.1.0 .and. (ri(k)/10.**nn).lt.10.0 ) exit do_loop_ri
enddo do_loop_ri
idx_i = int(ri(k)/10.**n) + 10*(n-nii2) - (n-nii2)
idx_i = max(1, min(idx_i, ntb_i))
else
idx_i = 1
endif
if (ni(k).gt. Nt_i(1)) then
nii = nint(log10(ni(k)))
do_loop_ni: do nn = nii-1, nii+1
n = nn
if ( (ni(k)/10.**nn).ge.1.0 .and. (ni(k)/10.**nn).lt.10.0 ) exit do_loop_ni
enddo do_loop_ni
idx_i1 = int(ni(k)/10.**n) + 10*(n-nii3) - (n-nii3)
idx_i1 = max(1, min(idx_i1, ntb_i1))
else
idx_i1 = 1
endif
!> - Rain lookup table indexes.
if (rr(k).gt. r_r(1)) then
nir = nint(log10(rr(k)))
do_loop_rr: do nn = nir-1, nir+1
n = nn
if ( (rr(k)/10.**nn).ge.1.0 .and. (rr(k)/10.**nn).lt.10.0 ) exit do_loop_rr
enddo do_loop_rr
idx_r = int(rr(k)/10.**n) + 10*(n-nir2) - (n-nir2)
idx_r = max(1, min(idx_r, ntb_r))
lamr = 1./ilamr(k)
lam_exp = lamr * (crg(3)*org2*org1)**bm_r
N0_exp = org1*rr(k)/am_r * lam_exp**cre(1)
nir = nint(log10(real(N0_exp, kind=dp)))
do_loop_nr: do nn = nir-1, nir+1
n = nn
if ( (N0_exp/10.**nn).ge.1.0 .and. (N0_exp/10.**nn).lt.10.0 ) exit do_loop_nr
enddo do_loop_nr
idx_r1 = int(N0_exp/10.**n) + 10*(n-nir3) - (n-nir3)
idx_r1 = max(1, min(idx_r1, ntb_r1))
else
idx_r = 1
idx_r1 = ntb_r1
endif
!> - Snow lookup table index.
if (rs(k).gt. r_s(1)) then
nis = nint(log10(rs(k)))
do_loop_rs: do nn = nis-1, nis+1
n = nn
if ( (rs(k)/10.**nn).ge.1.0 .and. (rs(k)/10.**nn).lt.10.0 ) exit do_loop_rs
enddo do_loop_rs
idx_s = int(rs(k)/10.**n) + 10*(n-nis2) - (n-nis2)
idx_s = max(1, min(idx_s, ntb_s))
else
idx_s = 1
endif
!> - Graupel lookup table index.
if (rg(k).gt. r_g(1)) then
nig = nint(log10(rg(k)))
do_loop_rg: do nn = nig-1, nig+1
n = nn
if ( (rg(k)/10.**nn).ge.1.0 .and. (rg(k)/10.**nn).lt.10.0 ) exit do_loop_rg
enddo do_loop_rg
idx_g = int(rg(k)/10.**n) + 10*(n-nig2) - (n-nig2)
idx_g = max(1, min(idx_g, ntb_g))
lamg = 1./ilamg(k)
lam_exp = lamg * (cgg(3,1)*ogg2*ogg1)**bm_g
N0_exp = ogg1*rg(k)/am_g(idx_bg(k)) * lam_exp**cge(1,1)
nig = nint(log10(real(N0_exp, kind=dp)))
do_loop_ng: do nn = nig-1, nig+1
n = nn
if ( (N0_exp/10.**nn).ge.1.0 .and. (N0_exp/10.**nn).lt.10.0 ) exit do_loop_ng
enddo do_loop_ng
idx_g1 = int(N0_exp/10.**n) + 10*(n-nig3) - (n-nig3)
idx_g1 = max(1, min(idx_g1, ntb_g1))
else
idx_g = 1
idx_g1 = ntb_g1
endif
!..Deposition/sublimation prefactor (from Srivastava & Coen 1992).
otemp = 1./temp(k)
rvs = rho(k)*qvsi(k)
rvs_p = rvs*otemp*(lsub*otemp*oRv - 1.)
rvs_pp = rvs * ( otemp*(lsub*otemp*oRv - 1.) &
*otemp*(lsub*otemp*oRv - 1.) &
+ (-2.*lsub*otemp*otemp*otemp*oRv) &
+ otemp*otemp)
gamsc = lsub*diffu(k)/tcond(k) * rvs_p
alphsc = 0.5*(gamsc/(1.+gamsc))*(gamsc/(1.+gamsc)) &
* rvs_pp/rvs_p * rvs/rvs_p
alphsc = max(1.E-9, alphsc)
xsat = ssati(k)
if (abs(xsat).lt. 1.E-9) xsat=0.
t1_subl = 4.*PI*( 1.0 - alphsc*xsat &
+ 2.*alphsc*alphsc*xsat*xsat &
- 5.*alphsc*alphsc*alphsc*xsat*xsat*xsat ) &
/ (1.+gamsc)
!..Snow collecting cloud water. In CE, assume Dc<<Ds and vtc=~0.
if (L_qc(k) .and. mvd_c(k).gt. D0c) then
! xDs = 0.0
! if (L_qs(k)) xDs = smoc(k) / smob(k)
if (xDs > d0s) then
idx = 1 + int(nbs*log(real(xDs/Ds(1), kind=dp)) / log(real(Ds(nbs)/Ds(1), kind=dp)))
idx = min(idx, nbs)
Ef_sw = t_Efsw(idx, int(mvd_c(k)*1.E6))
prs_scw(k) = rhof(k)*t1_qs_qc*Ef_sw*rc(k)*smoe(k)
prs_scw(k) = min(real(rc(k)*odts, kind=dp), prs_scw(k))
pnc_scw(k) = rhof(k)*t1_qs_qc*Ef_sw*nc(k)*smoe(k) ! Qc2M