diff --git a/src/framework/MOM_intrinsic_functions.F90 b/src/framework/MOM_intrinsic_functions.F90 index 4327cfa5a6..46238d4bc7 100644 --- a/src/framework/MOM_intrinsic_functions.F90 +++ b/src/framework/MOM_intrinsic_functions.F90 @@ -5,6 +5,7 @@ module MOM_intrinsic_functions ! This file is part of MOM6. See LICENSE.md for the license. use iso_fortran_env, only : stdout => output_unit, stderr => error_unit +use iso_fortran_env, only : int64, real64 implicit none ; private @@ -28,6 +29,7 @@ function invcosh(x) end function invcosh + !> Returns the cube root of a real argument at roundoff accuracy, in a form that works properly with !! rescaling of the argument by integer powers of 8. If the argument is a NaN, a NaN is returned. elemental function cuberoot(x) result(root) @@ -45,16 +47,20 @@ elemental function cuberoot(x) result(root) ! of the cube root of asx in arbitrary units that can grow or shrink with each iteration [B D] real :: den_prev ! The denominator of an expression for the previous iteration of the evolving estimate of ! the cube root of asx in arbitrary units that can grow or shrink with each iteration [D] - integer :: ex_3 ! One third of the exponent part of x, used to rescale x to get a. + !integer :: ex_3 ! One third of the exponent part of x, used to rescale x to get a. integer :: itt + integer(kind=int64) :: e_x, s_x + if ((x >= 0.0) .eqv. (x <= 0.0)) then ! Return 0 for an input of 0, or NaN for a NaN input. root = x else - ex_3 = ceiling(exponent(x) / 3.) - ! Here asx is in the range of 0.125 <= asx < 1.0 - asx = scale(abs(x), -3*ex_3) + !ex_3 = ceiling(exponent(x) / 3.) + !! Here asx is in the range of 0.125 <= asx < 1.0 + !asx = scale(abs(x), -3*ex_3) + + call rescale_exp(x, asx, e_x, s_x) ! Iteratively determine root_asx = asx**1/3 using Halley's method and then Newton's method, ! noting that Halley's method onverges monotonically and needs no bounding. Halley's method is @@ -82,11 +88,104 @@ elemental function cuberoot(x) result(root) ! that is within the last bit of the true solution. root_asx = root_asx - (root_asx**3 - asx) / (3.0 * (root_asx**2)) - root = sign(scale(root_asx, ex_3), x) - endif + !root = sign(scale(root_asx, ex_3), x) + root = descale_cbrt(root_asx, e_x, s_x) + endif end function cuberoot + +!> Rescale `a` to the range [0.125, 1) while preserving its fractional term. +pure subroutine rescale_exp(a, x, e_a, s_a) + real, intent(in) :: a + !< The value to be rescaled + real, intent(out) :: x + !< The rescaled value of `a` + integer(kind=int64), intent(out) :: e_a + !< The biased exponent of `a` + integer(kind=int64), intent(out) :: s_a + !< The sign bit of `a` + + ! Floating point model, if format is (sign, exp, frac) + integer, parameter :: bias = maxexponent(1.) - 1 + !< The double precision exponent offset (assuming a balanced range) + integer, parameter :: signbit = storage_size(1.) - 1 + !< Position of sign bit + integer, parameter :: explen = 1 + ceiling(log(real(bias))/log(2.)) + !< Bit size of exponent + integer, parameter :: expbit = signbit - explen + !< Position of lowest exponent bit + integer, parameter :: fraclen = expbit + !< Length of fractional part + + integer(kind=int64) :: xb + !< A floating point number, bit-packed as an integer + integer(kind=int64) :: e_scaled + !< The new rescaled exponent of `a` (i.e. the exponent of `x`) + + ! Pack bits of `a` into `xb` and extract its exponent and sign + xb = transfer(a, 1_int64) + s_a = ibits(xb, signbit, 1) + e_a = ibits(xb, expbit, explen) + + ! Decompose the exponent as `e = modulo(e,3) + 3*(e/3)` and extract the + ! rescaled exponent, now in {-3,-2,-1} + e_scaled = modulo(e_a, 3) - 3 + bias + + ! Insert the new 11-bit exponent into `xb`, while also setting the sign bit + ! to zero, ensuring that `xb` is always positive. + call mvbits(e_scaled, 0, explen + 1, xb, fraclen) + + ! Transfer the final modified value to `x` + x = transfer(xb, 1.) +end subroutine rescale_exp + + +!> Descale a real number to its original base, and apply the cube root to the +!! remaining exponent. +pure function descale_cbrt(x, e_a, s_a) result(r) + real, intent(in) :: x + !< Cube root of the rescaled value, which was rescaled to [0.125, 1.0) + integer(kind=int64), intent(in) :: e_a + !< Exponent of the original value to be cube rooted + integer(kind=int64), intent(in) :: s_a + !< Sign bit of the original value to be cube rooted + real :: r + !< Restored vale with the cube root applied to its exponent + + ! Floating point model, if format is (sign, exp, frac) + integer, parameter :: bias = maxexponent(1.) - 1 + !< The double precision exponent offset (assuming a balanced range) + integer, parameter :: signbit = storage_size(1.) - 1 + !< Position of sign bit + integer, parameter :: explen = 1 + ceiling(log(real(bias))/log(2.)) + !< Bit size of exponent + integer, parameter :: expbit = signbit - explen + !< Position of lowest exponent bit + integer, parameter :: fraclen = expbit + !< Length of fractional part + + integer(kind=int64) :: xb + ! Bit-packed real number into integer form + integer(kind=int64) :: e_r + ! Exponent of the descaled value + + ! Extract the exponent of the rescaled value, in {-3, -2, -1} + xb = transfer(x, 1_8) + e_r = ibits(xb, expbit, explen) + + ! Apply the cube root to the old exponent (after removing its bias) and add + ! to the rescaled exponent. Correct the previous -3 with a +1. + e_r = e_r + (e_a/3 - bias/3 + 1) + + ! Apply the corrected exponent and sign and convert back to real + call mvbits(e_r, 0, explen, xb, expbit) + call mvbits(s_a, 0, 1, xb, signbit) + r = transfer(xb, 1.) +end function descale_cbrt + + + !> Returns true if any unit test of intrinsic_functions fails, or false if they all pass. logical function intrinsic_functions_unit_tests(verbose) logical, intent(in) :: verbose !< If true, write results to stdout