Skip to content
This repository has been archived by the owner on Dec 11, 2024. It is now read-only.

Latest commit

 

History

History
151 lines (110 loc) · 7.05 KB

README.md

File metadata and controls

151 lines (110 loc) · 7.05 KB

Deep Beamline Simulation

black tests

Beamline Simulation using sirepo-bluesky and Synchrotron Radiation Workshop.

  • Free software: 3-clause BSD license

Purpose

Use machine learning techniques to simulate beamlines given data from SRW.

Installation

  • Install VirtualBox on your computer.

  • Install Vagrant using the terminal.

  • Git clone this repository. Then use cd deep-beamline-simulation to move into the top level directory of this repository.

  • You will see a Vagrantfile containing virtual machine setup information. Start the virtual machine using vagrant up followed by vagrant ssh. To reload the virtual machine use vagrant reload and to update the machine for any changes use vagrant provision.

    % vagrant up
    Bringing machine 'default' up with 'virtualbox' provider...
    ==> default: Checking if box 'bento/ubuntu-20.10' version '202107.28.0' is up to date...
    ==> default: Clearing any previously set forwarded ports...
    ==> default: Fixed port collision for 22 => 2222. Now on port 2201.
    ==> default: Machine already provisioned. Run `vagrant provision` or use the `--provision`
    ==> default: flag to force provisioning. Provisioners marked to run always will still run.
    % vagrant ssh
    Welcome to Ubuntu 20.10 (GNU/Linux 5.8.0-63-generic x86_64)
    * Documentation:  https://help.ubuntu.com
    * Management:     https://landscape.canonical.com
    * Support:        https://ubuntu.com/advantage
  vagrant@vagrant:~$
  • It is recommended to check the status of Mongo DB using sudo systemctl status mongod. If the status is 'dead' use sudo systemctl start mongod to start running Mongo DB.
  vagrant@vagrant:~$ sudo systemctl status mongod
  ● mongod.service - MongoDB Database Server
       Loaded: loaded (/lib/systemd/system/mongod.service; enabled; vendor preset: enabled)
       Active: inactive (dead) since Mon 2021-12-20 14:13:47 UTC; 3s ago
         Docs: https://docs.mongodb.org/manual
      Process: 647 ExecStart=/usr/bin/mongod --config /etc/mongod.conf (code=exited, status=0/SUCCESS)
     Main PID: 647 (code=exited, status=0/SUCCESS)
  Dec 20 14:07:41 vagrant systemd[1]: Started MongoDB Database Server.
  Dec 20 14:13:47 vagrant systemd[1]: Stopping MongoDB Database Server...
  Dec 20 14:13:47 vagrant systemd[1]: mongod.service: Succeeded.
  Dec 20 14:13:47 vagrant systemd[1]: Stopped MongoDB Database Server.
  vagrant@vagrant:~$ sudo systemctl start mongod
  vagrant@vagrant:~$ sudo systemctl status mongod
  ● mongod.service - MongoDB Database Server
       Loaded: loaded (/lib/systemd/system/mongod.service; enabled; vendor preset: enabled)
       Active: active (running) since Mon 2021-12-20 14:13:57 UTC; 1s ago
         Docs: https://docs.mongodb.org/manual
     Main PID: 2655 (mongod)
       Memory: 156.0M
       CGroup: /system.slice/mongod.service
               └─2655 /usr/bin/mongod --config /etc/mongod.conf
  Dec 20 14:13:57 vagrant systemd[1]: Started MongoDB Database Server.
  • To view the contents of deep-beamline-simulation repository use cd /vagrant.
  (dbs) vagrant@vagrant:~$ cd /vagrant/
  • There will be a conda environment created using the Vagrantfile. Verify this by using conda env list. To activate it use conda activate dbs.
  vagrant@vagrant:~$ conda env list
   conda environments:

  base                  *  /home/vagrant/miniconda3
  dbs                      /home/vagrant/miniconda3/envs/dbs

  vagrant@vagrant:~$ conda activate dbs
  • Use pip install . to install all requirements and setup necessary packages.
  (dbs) vagrant@vagrant:/vagrant$ pip install .

  ...

  Successfully built deep-beamline-simulation
  Installing collected packages: deep-beamline-simulation, ...

  ...

  Successfully installed deep-beamline-simulation-0.post246.dev0+g97d4ced ...
  • To run the docker container for Sirepo, use command bash scripts/start_sirepo.sh -it. To run the container in the background use -d instead. The default -it will run the container in interactive mode. Using interactive mode will force you to open a new terminal window to view code and make changes. In the new window use vagrant ssh to join the session created eariler and activate conda using the same command as above.
  (dbs) vagrant@vagrant:/vagrant$ bash scripts/start_sirepo.sh -it
  Creating Directory /home/vagrant/tmp/data/2021/12/20
  ...
  docker.io/radiasoft/sirepo:beta
  REPOSITORY         TAG       IMAGE ID       CREATED       SIZE
  radiasoft/sirepo   beta      5becae748c04   5 days ago    5.76GB
  radiasoft/sirepo   <none>    8117306ff3a6   3 weeks ago   5.76GB
  radiasoft/sirepo   <none>    9b56b3e3a7ff   5 weeks ago   5.76GB
  Command to run:

  docker run -it --init --rm --name sirepo        -e SIREPO_AUTH_METHODS=bluesky:guest        -e SIREPO_AUTH_BLUESKY_SECRET=bluesky        -e SIREPO_SRDB_ROOT=/sirepo        -e SIREPO_COOKIE_IS_SECURE=false        -p 8000:8000        radiasoft/sirepo:beta bash -l -c "mkdir -v -p /sirepo && sirepo service http"

  ...

   * Serving Flask app 'sirepo.server' (lazy loading)
   * Environment: development
   * Debug mode: off
   * Running on all addresses.
     WARNING: This is a development server. Do not use it in a production deployment.
   * Running on http://172.17.0.2:8000/ (Press CTRL+C to quit)
   * Restarting with stat
  • To verify the container is running use docker ps -a. If you chose to shutdown the container use docker stop <name of container>. In our case the docker container is called 'sirepo'.
  vagrant@vagrant:~$ docker ps -a
  CONTAINER ID   IMAGE                   COMMAND                  CREATED         STATUS         PORTS                                       NAMES
  f0d01fee65cf   radiasoft/sirepo:beta   "bash -l -c 'mkdir -…"   9 minutes ago   Up 9 minutes   0.0.0.0:8000->8000/tcp, :::8000->8000/tcp   sirepo

  vagrant@vagrant:~$ docker stop sirepo
  sirepo

Interactive Tensorboard

  • There are a few neural networks found in this repository. Pytorch is installed in the Vagrantfile and while running the pip install. There are a few extra steps to be able to use tensorboard applications.

  • When neural network training is complete, exit the virtual machine and run python tensorfile.py. Then use tensorboard --logdir=runs. This will provide output similar to the following. Copy and paste the link into the web browser to access tensorboard.

   Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
   TensorBoard 2.5.0 at http://localhost:6006/ (Press CTRL+C to quit)