You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I was training the second step to build MobileSAM image encoder (used as teacher model) to export onnx, I encountered the situation listed below, but still generated the required file mobile_sam_image_encoder_bs16.onnx, did I encounter the same situation? What effect will it have on the results?How to avoid?thank you
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/timm/models/layers/init.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
warnings.warn(f"Importing from {name} is deprecated, please import via timm.layers", FutureWarning)
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/timm/models/registry.py:4: FutureWarning: Importing from timm.models.registry is deprecated, please import via timm.models
warnings.warn(f"Importing from {name} is deprecated, please import via timm.models", FutureWarning)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_5m_224 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_5m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_11m_224 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_11m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_21m_224 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_21m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_21m_384 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_21m_384. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_21m_512 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_21m_512. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:338: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert L == H * W, "input feature has wrong size"
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:136: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results.
B = len(x)
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/torch/onnx/_internal/jit_utils.py:307: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
_C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/torch/onnx/utils.py:702: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
_C._jit_pass_onnx_graph_shape_type_inference(
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/torch/onnx/utils.py:1209: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
_C._jit_pass_onnx_graph_shape_type_inference(
The text was updated successfully, but these errors were encountered:
When I was training the second step to build MobileSAM image encoder (used as teacher model) to export onnx, I encountered the situation listed below, but still generated the required file mobile_sam_image_encoder_bs16.onnx, did I encounter the same situation? What effect will it have on the results?How to avoid?thank you
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/timm/models/layers/init.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
warnings.warn(f"Importing from {name} is deprecated, please import via timm.layers", FutureWarning)
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/timm/models/registry.py:4: FutureWarning: Importing from timm.models.registry is deprecated, please import via timm.models
warnings.warn(f"Importing from {name} is deprecated, please import via timm.models", FutureWarning)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_5m_224 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_5m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_11m_224 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_11m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_21m_224 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_21m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_21m_384 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_21m_384. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:656: UserWarning: Overwriting tiny_vit_21m_512 in registry with nanosam.mobile_sam.modeling.tiny_vit_sam.tiny_vit_21m_512. This is because the name being registered conflicts with an existing name. Please check if this is not expected.
return register_model(fn_wrapper)
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:338: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
assert L == H * W, "input feature has wrong size"
/home/work/nanosam/nanosam/mobile_sam/modeling/tiny_vit_sam.py:136: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results.
B = len(x)
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/torch/onnx/_internal/jit_utils.py:307: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
_C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/torch/onnx/utils.py:702: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
_C._jit_pass_onnx_graph_shape_type_inference(
/home/work/miniforge3/envs/nanosam/lib/python3.8/site-packages/torch/onnx/utils.py:1209: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
_C._jit_pass_onnx_graph_shape_type_inference(
The text was updated successfully, but these errors were encountered: