diff --git a/docs/install.rst b/docs/install.rst index 2790cc1..fb59c8e 100644 --- a/docs/install.rst +++ b/docs/install.rst @@ -48,6 +48,6 @@ the most recent version of CUDA, Docker, and nvidia-docker. After performing the above setup, you can pull the PyProf container using the following command:: - docker pull nvcr.io/nvidia/pytorch:20.07-py3 + docker pull nvcr.io/nvidia/pytorch:20.11-py3 -Replace *20.07* with the version of PyTorch container that you want to pull. +Replace *20.11* with the version of PyTorch container that you want to pull. diff --git a/docs/quickstart.rst b/docs/quickstart.rst index 6567248..26fcf13 100644 --- a/docs/quickstart.rst +++ b/docs/quickstart.rst @@ -39,7 +39,7 @@ Prerequisites drop down button. After cloning the repo be sure to select the r release branch that corresponds to the version of PyProf want to use:: - $ git checkout r20.07 + $ git checkout r20.11 * If you are starting with a pre-built NGC container, you will need to install Docker and nvidia-docker. For DGX users, see `Preparing to use NVIDIA Containers @@ -75,8 +75,8 @@ the GitHub repo and checkout the release version of the branch that you want to build (or the master branch if you want to build the under-development version):: - $ git checkout r20.07 - + $ git checkout r20.11 + Then use docker to build:: $ docker build --pull -t pyprof .