-
Notifications
You must be signed in to change notification settings - Fork 1k
/
model_runner.py
947 lines (847 loc) · 41.5 KB
/
model_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import math
from pathlib import Path
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorrt as trt
import torch
from .. import profiler
from .._utils import mpi_comm, mpi_world_size, numpy_to_torch
from ..bindings import KVCacheType, MpiComm
from ..bindings.executor import Executor
from ..builder import Engine, EngineConfig, get_engine_version
from ..logger import logger
from ..mapping import Mapping
from ..quantization import QuantMode
from .generation import (DISABLE_TORCH_DEVICE_SET, ChatGLMGenerationSession,
GenerationSession, LogitsProcessor, LoraManager,
ModelConfig, QWenForCausalLMGenerationSession,
SamplingConfig, StoppingCriteria, to_word_list_format)
def get_engine_name(model: str, dtype: str, tp_size: int, pp_size: int,
rank: int) -> str:
"""
Get the serialized engine file name.
Args:
model (str):
Model name, e.g., bloom, gpt.
dtype (str):
Data type, e.g., float32, float16, bfloat16,
tp_size (int):
The size of tensor parallel.
pp_size (int):
The size of pipeline parallel.
rank (int):
The rank id.
Returns:
str: The serialized engine file name.
"""
if pp_size == 1:
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
return '{}_{}_tp{}_pp{}_rank{}.engine'.format(model, dtype, tp_size,
pp_size, rank)
def read_config(config_path: Path) -> Tuple[ModelConfig, dict]:
"""
Read the engine config file and create a ModelConfig instance, return the ModelConfig instance
and other config fields in a dict.
Args:
config_path (Path):
The path of engine config file.
Returns:
Tuple[ModelConfig, dict]: A ModelConfig instance and other config fields.
"""
with open(config_path, 'r') as f:
config = json.load(f)
return _builder_to_model_config(config)
def _builder_to_model_config(config: dict) -> Tuple[ModelConfig, dict]:
builder_config = config['builder_config']
model_name = builder_config['name']
dtype = builder_config['precision']
tp_size = builder_config['tensor_parallel']
pp_size = builder_config.get('pipeline_parallel', 1)
kv_cache_type = KVCacheType(builder_config.get('kv_cache_type'))
world_size = tp_size * pp_size
assert world_size == mpi_world_size(), \
f'Engine world size ({tp_size} * {pp_size}) != Runtime world size ({mpi_world_size()})'
num_heads = builder_config['num_heads']
assert num_heads % tp_size == 0, \
f"The number of heads ({num_heads}) is not a multiple of tp_size ({tp_size})"
num_kv_heads = builder_config.get('num_kv_heads', num_heads)
# TODO: multi_query_mode should be removed
multi_query_mode = builder_config.get('multi_query_mode', False)
if multi_query_mode:
logger.warning(
"`multi_query_mode` config is deprecated. Please rebuild the engine."
)
# num_kv_heads, if exists in config, should override multi_query_mode
if multi_query_mode and ('num_kv_heads' not in builder_config):
num_kv_heads = 1
num_heads = num_heads // tp_size
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
head_size = builder_config.get('head_size', None)
hidden_size = builder_config['hidden_size'] // tp_size
vocab_size = builder_config['vocab_size']
num_layers = builder_config['num_layers']
max_batch_size = builder_config['max_batch_size']
max_beam_width = builder_config['max_beam_width']
cross_attention = builder_config.get('cross_attention', False)
has_position_embedding = builder_config.get('has_position_embedding', True)
has_token_type_embedding = builder_config.get('has_token_type_embedding',
False)
gather_context_logits = builder_config.get('gather_context_logits', False)
gather_generation_logits = builder_config.get('gather_generation_logits',
False)
max_prompt_embedding_table_size = builder_config.get(
'max_prompt_embedding_table_size', 0)
quant_mode = QuantMode(builder_config.get('quant_mode', 0))
lora_target_modules = builder_config.get('lora_target_modules')
lora_trtllm_modules_to_hf_modules = builder_config.get(
'trtllm_modules_to_hf_modules')
max_medusa_token_len = builder_config.get('max_draft_len', 0)
num_medusa_heads = builder_config.get('num_medusa_heads', 0)
skip_cross_attn_blocks = bool(config['pretrained_config'].get(
'skip_cross_attn_blocks', False))
# ReDrafter
redrafter_num_beams = config['pretrained_config'].get(
'redrafter_num_beams', 0)
redrafter_draft_len_per_beam = config['pretrained_config'].get(
'redrafter_draft_len_per_beam', 0)
plugin_config = config['plugin_config']
use_gpt_attention_plugin = bool(plugin_config['gpt_attention_plugin'])
mamba_conv1d_plugin = bool(plugin_config['mamba_conv1d_plugin'])
remove_input_padding = plugin_config['remove_input_padding']
paged_state = plugin_config['paged_state']
tokens_per_block = plugin_config['tokens_per_block']
lora_plugin = plugin_config.get('lora_plugin')
model_config = ModelConfig(
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
vocab_size=vocab_size,
num_layers=num_layers,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
head_size=head_size,
gpt_attention_plugin=use_gpt_attention_plugin,
mamba_conv1d_plugin=mamba_conv1d_plugin,
remove_input_padding=remove_input_padding,
model_name=model_name,
kv_cache_type=kv_cache_type,
paged_state=paged_state,
cross_attention=cross_attention,
has_position_embedding=has_position_embedding,
has_token_type_embedding=has_token_type_embedding,
tokens_per_block=tokens_per_block,
max_prompt_embedding_table_size=max_prompt_embedding_table_size,
quant_mode=quant_mode,
gather_context_logits=gather_context_logits,
gather_generation_logits=gather_generation_logits,
dtype=dtype,
lora_plugin=lora_plugin,
lora_target_modules=lora_target_modules,
trtllm_modules_to_hf_modules=lora_trtllm_modules_to_hf_modules,
num_medusa_heads=num_medusa_heads,
max_medusa_tokens=max_medusa_token_len,
skip_cross_attn_blocks=skip_cross_attn_blocks,
# ReDrafter
redrafter_num_beams=redrafter_num_beams,
redrafter_draft_len_per_beam=redrafter_draft_len_per_beam,
)
other_config = {
'world_size': world_size,
'tp_size': tp_size,
'pp_size': pp_size,
'max_batch_size': builder_config['max_batch_size'],
'max_input_len': builder_config['max_input_len'],
'max_output_len': builder_config['max_output_len'],
'max_beam_width': builder_config['max_beam_width']
}
return model_config, other_config
def _engine_config_to_model_config(engine_config: EngineConfig,
**kwargs) -> ModelConfig:
pretrained_config = engine_config.pretrained_config
build_config = engine_config.build_config
tp_size = pretrained_config.mapping.tp_size
num_heads = pretrained_config.num_attention_heads // tp_size
num_kv_heads = pretrained_config.num_key_value_heads
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
hidden_size = pretrained_config.hidden_size // tp_size
head_size = pretrained_config.head_size
rnn_config_items = [
'conv_kernel', 'layer_types', 'rnn_hidden_size', 'state_size',
'state_dtype', 'rnn_head_size', 'rnn_conv_dim_size'
]
rnn_configs_kwargs = {}
for item in rnn_config_items:
if hasattr(pretrained_config, item):
rnn_configs_kwargs[item] = getattr(pretrained_config, item)
if not hasattr(build_config, 'kv_cache_type'):
logger.Warning(
'Build config doesn\'t have kv_cache_type, you might need to rebuild your enigne.'
)
# TODO(oargov): this is a hack, make it prettier!
if hasattr(pretrained_config, "num_kv_heads_per_layer"):
num_kv_heads_per_layer = pretrained_config.num_kv_heads_per_layer
elif hasattr(pretrained_config, "get_layer_num_kv_heads"):
# each layer has a different number of kv heads
attention_layers = [
layer_idx for layer_idx, layer_type in enumerate(
pretrained_config.layer_types) if layer_type == "attention"
] if hasattr(pretrained_config, "layer_types") else list(
range(pretrained_config.num_hidden_layers))
num_kv_heads_per_layer = [
pretrained_config.get_layer_num_kv_heads(layer_idx)
if layer_idx in attention_layers else 0
for layer_idx in range(pretrained_config.num_hidden_layers)
]
else:
num_kv_heads_per_layer = None
if hasattr(pretrained_config, "num_kv_heads_per_cross_attn_layer"):
num_kv_heads_per_cross_attn_layer = pretrained_config.num_kv_heads_per_cross_attn_layer
else:
num_kv_heads_per_cross_attn_layer = None
return ModelConfig(
max_batch_size=build_config.max_batch_size,
max_beam_width=build_config.max_beam_width,
vocab_size=pretrained_config.vocab_size,
num_layers=pretrained_config.num_hidden_layers,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
head_size=head_size,
gpt_attention_plugin=bool(
build_config.plugin_config.gpt_attention_plugin),
mamba_conv1d_plugin=bool(
build_config.plugin_config.mamba_conv1d_plugin),
remove_input_padding=build_config.plugin_config.remove_input_padding,
paged_state=build_config.plugin_config.paged_state,
tokens_per_block=build_config.plugin_config.tokens_per_block,
quant_mode=pretrained_config.quant_mode,
gather_context_logits=build_config.gather_context_logits,
gather_generation_logits=build_config.gather_generation_logits,
dtype=pretrained_config.dtype,
max_prompt_embedding_table_size=build_config.
max_prompt_embedding_table_size,
lora_plugin=build_config.plugin_config.lora_plugin,
lora_target_modules=build_config.lora_config.lora_target_modules,
trtllm_modules_to_hf_modules=build_config.lora_config.
trtllm_modules_to_hf_modules,
max_medusa_tokens=pretrained_config.max_draft_len if hasattr(
pretrained_config, 'max_draft_len') else 0,
num_medusa_heads=pretrained_config.num_medusa_heads if hasattr(
pretrained_config, 'num_medusa_heads') else 0,
**rnn_configs_kwargs,
num_kv_heads_per_layer=num_kv_heads_per_layer,
num_kv_heads_per_cross_attn_layer=num_kv_heads_per_cross_attn_layer,
redrafter_num_beams=pretrained_config.redrafter_num_beams if hasattr(
pretrained_config, 'redrafter_num_beams') else 0,
redrafter_draft_len_per_beam=pretrained_config.
redrafter_draft_len_per_beam
if hasattr(pretrained_config, 'redrafter_draft_len_per_beam') else 0,
kv_cache_type=getattr(build_config, 'kv_cache_type',
KVCacheType.CONTINUOUS),
cross_attention=getattr(pretrained_config, 'cross_attention', False),
has_position_embedding=getattr(pretrained_config,
'has_position_embedding', True),
skip_cross_attn_blocks=getattr(pretrained_config,
'skip_cross_attn_blocks', False),
**kwargs)
class ModelRunnerMixin:
def _check_inputs(self, batch_input_ids: List[torch.Tensor],
sampling_config: SamplingConfig):
batch_size = len(batch_input_ids)
if batch_size > self.max_batch_size:
raise RuntimeError(
f"Input batch size ({batch_size}) exceeds the engine or specified limit ({self.max_batch_size})"
)
input_lengths = [x.size(0) for x in batch_input_ids]
max_length = max(input_lengths)
if max_length > self.max_input_len:
raise RuntimeError(
f"Maximum input length ({max_length}) exceeds the engine or specified limit ({self.max_input_len})"
)
if max_length + sampling_config.max_new_tokens > self.max_seq_len:
raise RuntimeError(
f"Maximum input length ({max_length}) + maximum new tokens ({sampling_config.max_new_tokens}) exceeds the engine or specified limit ({self.max_seq_len})"
)
if sampling_config.num_beams > self.max_beam_width:
raise RuntimeError(
f"Num beams ({sampling_config.num_beams}) exceeds the engine or specified limit ({self.max_beam_width})"
)
def _prepare_inputs(self, batch_input_ids: List[torch.Tensor],
pad_id: int) -> Tuple[torch.Tensor]:
# Cast to int32
batch_input_ids = [x.type(torch.int32) for x in batch_input_ids]
input_lengths = [x.size(0) for x in batch_input_ids]
max_length = max(input_lengths)
if self.remove_input_padding:
batch_input_ids = torch.concat(batch_input_ids)
else:
# Right padding for trt-llm
paddings = [
torch.ones(max_length - l, dtype=torch.int32) * pad_id
for l in input_lengths
]
batch_input_ids = [
torch.cat([x, pad]) for x, pad in zip(batch_input_ids, paddings)
]
batch_input_ids = torch.stack(batch_input_ids)
input_lengths = torch.tensor(input_lengths, dtype=torch.int32)
return batch_input_ids, input_lengths
def _prepare_outputs(self, outputs: Optional[dict],
input_lengths: torch.Tensor) -> dict:
if outputs is not None:
batch_size = input_lengths.size(0)
if 'context_logits' in outputs:
if self.mapping.has_pp():
# If pp size > 1, the context logits and generation logits are both in last pp
# Last pp rank send context logits and generation logits to rank 0
if self.mapping.is_last_pp_rank():
context_logits = outputs['context_logits']
context_logits_host = context_logits.cpu()
mpi_comm().send(context_logits_host, dest=0)
elif self.mapping.is_first_pp_rank():
context_logits_host = mpi_comm().recv(
source=self.mapping.prev_pp_rank()
) # Prev pp rank of rank=0 is the last pp
context_logits = context_logits_host.to(
torch.device('cuda:0'))
outputs['context_logits'] = context_logits
context_logits = outputs['context_logits']
context_logits_output = []
if self.remove_input_padding:
if isinstance(self.session, Executor) and batch_size > 1:
# The starting position of the context logits buffer of each micro batch is separated
num_batches = self.mapping.pp_size
micro_batch_size = math.ceil(batch_size /
self.mapping.pp_size)
for i in range(num_batches):
start_idx = i * micro_batch_size
end_idx = min(start_idx + micro_batch_size,
batch_size)
micro_context_logits = context_logits[
start_idx:end_idx]
micro_input_lengths = input_lengths[
start_idx:end_idx]
micro_context_logits = micro_context_logits.flatten(
end_dim=-2)
seg_points = [0] + micro_input_lengths.cumsum(
dim=0).tolist()
context_logits_output += [
micro_context_logits[s:e]
for s, e in zip(seg_points[:-1], seg_points[1:])
]
else:
context_logits = context_logits.flatten(end_dim=-2)
seg_points = [0] + input_lengths.cumsum(dim=0).tolist()
context_logits_output = [
context_logits[s:e]
for s, e in zip(seg_points[:-1], seg_points[1:])
]
else:
context_logits_output = [
context_logits[bidx, :input_lengths[bidx]]
for bidx in range(batch_size)
]
assert len(context_logits_output) == batch_size
outputs['context_logits'] = context_logits_output
if 'generation_logits' in outputs:
if self.mapping.has_pp():
if self.mapping.is_last_pp_rank():
generation_logits = outputs['generation_logits']
if isinstance(generation_logits, list):
generation_logits_host = [
logits.cpu() for logits in generation_logits
]
else:
generation_logits_host = generation_logits.cpu()
mpi_comm().send(generation_logits_host, dest=0)
elif self.mapping.is_first_pp_rank():
generation_logits_host = mpi_comm().recv(
source=self.mapping.prev_pp_rank()
) # Prev pp rank of rank=0 is the last pp
if isinstance(generation_logits_host, list):
generation_logits = [
logits.to(torch.device('cuda:0'))
for logits in generation_logits_host
]
else:
generation_logits = generation_logits_host.to(
torch.device('cuda:0'))
outputs['generation_logits'] = generation_logits
if isinstance(self.session, GenerationSession):
# Convert logits format to be same as GptSession
generation_logits = torch.stack(
outputs['generation_logits'], dim=1)
batch_x_beam, max_gen_len, voc_size = generation_logits.size(
)
num_beams = batch_x_beam // batch_size
generation_logits = generation_logits.view(
batch_size, num_beams, max_gen_len, voc_size)
outputs['generation_logits'] = generation_logits
return outputs
def _prepare_embedding_table(self, prompt_table: Union[str, torch.Tensor]):
if isinstance(prompt_table, str):
prompt_table_data = numpy_to_torch(
np.load(prompt_table)).to(dtype=self.dtype)
else:
assert isinstance(
prompt_table,
torch.Tensor), "Prompt table should be str or torch.Tensor"
prompt_table_data = prompt_table.to(dtype=self.dtype)
return prompt_table_data
def _prepare_ptuning(self, prompt_table: Union[str, torch.Tensor],
tasks: str, batch_size: int):
if self.max_prompt_embedding_table_size == 0:
return {}
if prompt_table is not None:
prompt_table_data = self._prepare_embedding_table(prompt_table)
if len(prompt_table_data.size()) == 3:
_, task_vocab_size, hidden_size = prompt_table_data.size()
elif len(prompt_table_data.size()) == 2:
task_vocab_size, hidden_size = prompt_table_data.size()
task_vocab_size = torch.tensor([task_vocab_size], dtype=torch.int32)
prompt_table_data = prompt_table_data.view(-1, hidden_size)
else:
prompt_table_data = torch.empty([1, self.hidden_size],
dtype=self.dtype)
task_vocab_size = torch.zeros([1], dtype=torch.int32)
if tasks is not None:
tasks = torch.tensor([int(t) for t in tasks.split(',')],
dtype=torch.int32)
assert tasks.size(0) == batch_size, \
f"Number of supplied tasks ({tasks.size(0)}) must match input batch size ({batch_size})"
else:
tasks = torch.zeros([batch_size], dtype=torch.int32)
if isinstance(self.session, GenerationSession):
return {
'prompt_embedding_table': prompt_table_data.cuda(),
'tasks': tasks.cuda(),
'prompt_vocab_size': task_vocab_size.cuda()
}
else:
return {
'embedding_table': prompt_table_data.cuda(),
'tasks': tasks.cuda(),
'vocab_size': task_vocab_size.cuda()
}
class ModelRunner(ModelRunnerMixin):
"""
An interface class that wraps GenerationSession and provides generation methods.
"""
def __init__(self,
session: GenerationSession,
max_batch_size: int,
max_input_len: int,
max_seq_len: int,
max_beam_width: int,
kv_cache_type: KVCacheType,
lora_manager: Optional[LoraManager] = None) -> None:
"""
Create a ModelRunner instance.
You are recommended to use the from_dir method to load the engine and create a ModelRunner instance.
Args:
session (GenerationSession):
The TensorRT session created from an engine.
max_batch_size (int):
The maximum batch size allowed for the input.
max_input_len (int):
The maximum input length allowed for the input.
max_seq_len (int):
The maximum sequence length (input + new tokens).
max_beam_width (int):
The maximum beam width.
lora_manager (LoraManager):
The LoRA manager to handle LoRA weights.
"""
self.session = session
self.max_batch_size = max_batch_size
self.max_input_len = max_input_len
self.max_seq_len = max_seq_len
self.max_beam_width = max_beam_width
self.lora_manager = lora_manager
self.kv_cache_type = kv_cache_type
self.enable_context_fmha_fp32_acc = False
@classmethod
def from_engine(
cls,
engine: Engine,
max_output_len: Optional[int] = None,
lora_dir: Optional[List[str]] = None,
rank: int = 0,
debug_mode: bool = False,
lora_ckpt_source: str = "hf",
medusa_choices: List[List[int]] = None,
stream: torch.cuda.Stream = None,
gpu_weights_percent: float = 1,
enable_context_fmha_fp32_acc: Optional[bool] = None
) -> 'ModelRunner':
model_config = _engine_config_to_model_config(
engine.config, gpu_weights_percent=gpu_weights_percent)
if model_config.kv_cache_type == KVCacheType.DISABLED:
assert max_output_len == 1 or max_output_len is None, 'Disabled KV cache is intended for context phase only now.'
pretrained_config = engine.config.pretrained_config
build_config = engine.config.build_config
max_batch_size = build_config.max_batch_size
max_input_len = build_config.max_input_len
max_seq_len = build_config.max_seq_len
max_beam_width = build_config.max_beam_width
if 'GLM' in pretrained_config.architecture and pretrained_config.chatglm_version in [
'glm', 'chatglm'
]:
session_cls = ChatGLMGenerationSession
else:
session_cls = GenerationSession
engine_buffer = engine.engine
runtime_mapping = pretrained_config.mapping
if medusa_choices is not None:
assert session_cls == GenerationSession, "Medusa is only supported by GenerationSession"
assert model_config.max_medusa_tokens > 0, \
"medusa_chioce is specified but model_config.max_medusa_tokens is 0."
if MpiComm.size() > runtime_mapping.gpus_per_node:
assert MpiComm.local_size() == runtime_mapping.gpus_per_node
if not DISABLE_TORCH_DEVICE_SET:
torch.cuda.set_device(rank % runtime_mapping.gpus_per_node)
session = session_cls(model_config,
engine_buffer,
runtime_mapping,
debug_mode=debug_mode,
stream=stream)
if session.runtime.engine.streamable_weights_size:
session.runtime._set_weight_streaming(gpu_weights_percent)
if session.use_lora_plugin:
lora_manager = LoraManager()
if lora_dir is not None:
lora_manager.load_from_ckpt(lora_dir,
model_config=model_config,
runtime_mapping=runtime_mapping,
ckpt_source=lora_ckpt_source)
else:
lora_manager = None
runner = cls(session=session,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_seq_len=max_seq_len,
max_beam_width=max_beam_width,
kv_cache_type=model_config.kv_cache_type,
lora_manager=lora_manager)
runner.enable_context_fmha_fp32_acc = enable_context_fmha_fp32_acc
return runner
@classmethod
def from_dir(
cls,
engine_dir: str,
max_output_len: Optional[int] = None,
lora_dir: Optional[List[str]] = None,
rank: int = 0,
debug_mode: bool = False,
lora_ckpt_source: str = "hf",
medusa_choices: List[List[int]] = None,
stream: torch.cuda.Stream = None,
gpu_weights_percent: float = 1,
enable_context_fmha_fp32_acc: Optional[bool] = None
) -> 'ModelRunner':
"""
Create a ModelRunner instance from an engine directory.
Args:
engine_dir (str):
The directory that contains the serialized engine files and config files.
max_output_len (Optional[int]):
max_output_len, this arg might be available only when loading time, generate will still to check when disable_kv_cache is enabled.
lora_dir (Optional[List[str]]):
The directories that contain LoRA weights.
rank (int):
The runtime rank id.
debug_mode (bool):
Whether or not to turn on the debug mode.
medusa_choices (List[List[int]]):
Medusa choices to use when in Medusa decoding
stream (torch.cuda.Stream):
Stream to use.
Returns:
ModelRunner: An instance of ModelRunner.
"""
engine_version = get_engine_version(engine_dir)
profiler.start('load tensorrt_llm engine')
# the old engine format
if engine_version is None:
engine_dir = Path(engine_dir)
config_path = engine_dir / "config.json"
model_config, other_config = read_config(config_path)
world_size = other_config.pop('world_size')
tp_size = other_config.pop('tp_size')
pp_size = other_config.pop('pp_size')
max_batch_size = other_config.pop('max_batch_size')
max_input_len = other_config.pop('max_input_len')
max_output_len = other_config.pop('max_output_len')
max_beam_width = other_config.pop('max_beam_width')
runtime_mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=tp_size,
pp_size=pp_size)
engine_name = get_engine_name(model_config.model_name,
model_config.dtype, tp_size, pp_size,
rank)
serialize_path = engine_dir / engine_name
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
if model_config.model_name in ('chatglm_6b', 'glm_10b'):
session_cls = ChatGLMGenerationSession
elif model_config.model_name == 'qwen':
session_cls = QWenForCausalLMGenerationSession
else:
session_cls = GenerationSession
if medusa_choices is not None:
assert model_config.max_medusa_tokens > 0, \
"medusa_choice is specified but model_config.max_medusa_tokens is 0."
if not DISABLE_TORCH_DEVICE_SET:
torch.cuda.set_device(rank % runtime_mapping.gpus_per_node)
session = session_cls(model_config,
engine_buffer,
runtime_mapping,
debug_mode=debug_mode,
stream=stream)
if session.use_lora_plugin:
lora_manager = LoraManager()
if lora_dir is not None:
lora_manager.load_from_ckpt(lora_dir,
model_config=model_config,
runtime_mapping=runtime_mapping,
ckpt_source=lora_ckpt_source)
else:
lora_manager = None
if session.runtime.engine.streamable_weights_size:
session.runtime._set_weight_streaming(gpu_weights_percent)
profiler.stop('load tensorrt_llm engine')
loading_time = profiler.elapsed_time_in_sec(
"load tensorrt_llm engine")
logger.info(f'Load engine takes: {loading_time} sec')
runner = cls(session=session,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_seq_len=max_input_len + max_output_len,
max_beam_width=max_beam_width,
kv_cache_type=KVCacheType.CONTINUOUS,
lora_manager=lora_manager)
runner.enable_context_fmha_fp32_acc = enable_context_fmha_fp32_acc
return runner
else:
# the new engine format
engine = Engine.from_dir(engine_dir, rank)
if lora_dir is None:
config_lora_dir = engine.config.build_config.lora_config.lora_dir
if len(config_lora_dir) > 0:
lora_dir = [
f"{engine_dir}/{dir}" for dir in config_lora_dir
]
lora_ckpt_source = engine.config.build_config.lora_config.lora_ckpt_source
runner = ModelRunner.from_engine(engine, max_output_len, lora_dir,
rank, debug_mode, lora_ckpt_source,
medusa_choices, stream,
gpu_weights_percent)
profiler.stop('load tensorrt_llm engine')
loading_time = profiler.elapsed_time_in_sec(
"load tensorrt_llm engine")
logger.info(f'Load engine takes: {loading_time} sec')
return runner
@property
def dtype(self) -> torch.dtype:
return self.session.dtype
@property
def vocab_size(self) -> int:
return self.session.vocab_size
@property
def vocab_size_padded(self) -> int:
return self.session.vocab_size_padded
@property
def hidden_size(self) -> int:
return self.session.hidden_size
@property
def num_heads(self) -> int:
return self.session.num_heads
@property
def num_layers(self) -> int:
return self.session.num_layers
@property
def max_sequence_length(self) -> int:
return self.max_seq_len
@property
def remove_input_padding(self) -> bool:
return self.session.remove_input_padding
@property
def use_lora_plugin(self) -> bool:
return self.session.use_lora_plugin
@property
def max_prompt_embedding_table_size(self) -> int:
return self.session.max_prompt_embedding_table_size
@property
def mapping(self) -> Mapping:
return self.session.mapping
@property
def gather_context_logits(self) -> bool:
return self.session.gather_context_logits
@property
def gather_generation_logits(self) -> bool:
return self.session.gather_generation_logits
def generate(self,
batch_input_ids: List[torch.Tensor],
position_ids: List[torch.Tensor] = None,
sampling_config: Optional[SamplingConfig] = None,
prompt_table: Optional[Union[str, torch.Tensor]] = None,
prompt_tasks: Optional[str] = None,
lora_uids: Optional[list] = None,
streaming: bool = False,
stopping_criteria: Optional[StoppingCriteria] = None,
logits_processor: Optional[LogitsProcessor] = None,
medusa_choices: Optional[List[List[int]]] = None,
encoder_max_input_length: int = None,
encoder_input_features: List[torch.Tensor] = None,
encoder_output_lengths: List[torch.Tensor] = None,
cross_attention_masks: List[torch.Tensor] = None,
**kwargs) -> Union[torch.Tensor, dict]:
"""
Generates sequences of token ids.
The generation-controlling parameters are set in the sampling_config; it will be set to a default one if not passed.
You can override any sampling_config's attributes by passing corresponding parameters.
Args:
batch_input_ids (List[torch.Tensor]):
A list of input id tensors. Each tensor is of shape (sequence_length, ).
sampling_config (SamplingConfig):
The sampling configuration to be used as base parametrization for the generation call.
The passed **kwargs matching the sampling_config's attributes will override them.
If the sampling_config is not provided, a default will be used.
prompt_table (str or torch.Tensor):
The file path of prompt table (.npy format, exported by nemo_prompt_convert.py) or the prompt table itself.
prompt_tasks (str):
The prompt tuning task ids for the input batch, in format of comma-separated list (e.g., 0,3,1,0).
lora_uids (list):
The uids of LoRA weights for the input batch. Use -1 to disable the LoRA module.
streaming (bool):
Whether or not to use streaming mode for generation.
stopping_criteria (StoppingCriteria):
Custom stopping criteria.
logits_processor (LogitsProcessor):
Custom logits processors.
medusa_choices (List[List[int]]):
Medusa decoding choices.
kwargs (Dict[str, Any]:
Ad hoc parametrization of sampling_config.
The passed **kwargs matching the sampling_config's attributes will override them.
Returns:
torch.Tensor or dict:
If return_dict=False, the method returns generated output_ids.
If return_dict=True, the method returns a dict of output_ids,
sequence_lengths (if sampling_config.output_sequence_lengths=True),
context_logits and generation_logits (if self.gather_context_logits=True
and self.gather_generation_logits=True, respectively).
"""
# Use sampling_config like HF's generation_config
if sampling_config is None:
sampling_config = SamplingConfig(end_id=None, pad_id=None)
else:
sampling_config = copy.deepcopy(sampling_config)
sampling_config.update(**kwargs)
# To prevent numerical overflow when the temperature is set to 0.0
# Modify generation.SamplingConfig
if isinstance(sampling_config.temperature,
float) and sampling_config.temperature == 0.0:
logger.warning(
"Convert `temperature=0.0` to `temperature=1.0` and `top_k=1` to prevent overflow."
)
sampling_config.temperature = 1.0
sampling_config.top_k = 1
self._check_inputs(batch_input_ids, sampling_config)
if kwargs.get('num_return_sequences', None) is not None:
raise ValueError(
'num_return_sequences will be ignored since '
'num_return_sequences > 1 is not supported on python runtime. '
'Please use C++ runtime.')
batch_size = len(batch_input_ids)
batch_input_ids, input_lengths = self._prepare_inputs(
batch_input_ids, sampling_config.pad_id)
def maybe_convert_to_words_list_format(
words_list: Optional[Union[list, np.ndarray, torch.Tensor]]
) -> Optional[np.ndarray]:
if words_list is None or isinstance(words_list, np.ndarray):
return words_list
elif isinstance(words_list, torch.Tensor):
return words_list.numpy()
elif isinstance(words_list, list):
return to_word_list_format(words_list)
else:
raise TypeError(
f"Unexpected words_list type={type(words_list)}. Only list, np.ndarray, and torch.Tensor are supported."
)
if cross_attention_masks is not None:
encoder_input_features = torch.concat(encoder_input_features)
encoder_output_lengths = torch.concat(encoder_output_lengths)
sampling_config.bad_words_list = maybe_convert_to_words_list_format(
sampling_config.bad_words_list)
sampling_config.stop_words_list = maybe_convert_to_words_list_format(
sampling_config.stop_words_list)
if not self.kv_cache_type and sampling_config.max_new_tokens > 1:
raise RuntimeError(
'Disabled KV cache is intended for context phase only now.')
self.session.setup(
batch_size=batch_size,
max_context_length=input_lengths.max().item(),
max_new_tokens=sampling_config.max_new_tokens,
beam_width=sampling_config.num_beams,
max_attention_window_size=sampling_config.max_attention_window_size,
sink_token_length=sampling_config.sink_token_length,
lora_manager=self.lora_manager,
lora_uids=lora_uids,
medusa_choices=medusa_choices,
enable_context_fmha_fp32_acc=self.enable_context_fmha_fp32_acc,
encoder_max_input_length=encoder_max_input_length,
)
batch_input_ids = batch_input_ids.cuda()
input_lengths = input_lengths.cuda()
other_kwargs = self._prepare_ptuning(prompt_table, prompt_tasks,
batch_size)
other_kwargs['skip_cross_attn_blocks'] = kwargs.get(
'skip_cross_attn_blocks', None)
outputs = self.session.decode(
batch_input_ids,
input_lengths,
sampling_config,
stop_words_list=sampling_config.stop_words_list,
bad_words_list=sampling_config.bad_words_list,
output_sequence_lengths=sampling_config.output_sequence_lengths,
return_dict=sampling_config.return_dict,
streaming=streaming,
stopping_criteria=stopping_criteria,
logits_processor=logits_processor,
position_ids=position_ids,
encoder_output=encoder_input_features,
encoder_input_lengths=encoder_output_lengths,
cross_attention_mask=cross_attention_masks,
**other_kwargs)
if sampling_config.return_dict:
if streaming:
outputs = (self._prepare_outputs(curr_outputs, input_lengths)
for curr_outputs in outputs)
else:
outputs = self._prepare_outputs(outputs, input_lengths)
return outputs
def serialize_engine(self) -> trt.IHostMemory:
"""
Serialize the engine.
Returns:
bytes: The serialized engine.
"""
return self.session.runtime._serialize_engine()