-
Notifications
You must be signed in to change notification settings - Fork 10
/
nvHLSLExtnsInternal.h
758 lines (634 loc) · 28.3 KB
/
nvHLSLExtnsInternal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/*********************************************************************************************************\
|* *|
|* SPDX-FileCopyrightText: Copyright (c) 2019-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. *|
|* SPDX-License-Identifier: MIT *|
|* *|
|* Permission is hereby granted, free of charge, to any person obtaining a *|
|* copy of this software and associated documentation files (the "Software"), *|
|* to deal in the Software without restriction, including without limitation *|
|* the rights to use, copy, modify, merge, publish, distribute, sublicense, *|
|* and/or sell copies of the Software, and to permit persons to whom the *|
|* Software is furnished to do so, subject to the following conditions: *|
|* *|
|* The above copyright notice and this permission notice shall be included in *|
|* all copies or substantial portions of the Software. *|
|* *|
|* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *|
|* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *|
|* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *|
|* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *|
|* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *|
|* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *|
|* DEALINGS IN THE SOFTWARE. *|
|* *|
|* *|
\*********************************************************************************************************/
////////////////////////// NVIDIA SHADER EXTENSIONS /////////////////
// internal functions
// Functions in this file are not expected to be called by apps directly
#include "nvShaderExtnEnums.h"
struct NvShaderExtnStruct
{
uint opcode; // opcode
uint rid; // resource ID
uint sid; // sampler ID
uint4 dst1u; // destination operand 1 (for instructions that need extra destination operands)
uint4 src3u; // source operand 3
uint4 src4u; // source operand 4
uint4 src5u; // source operand 5
uint4 src0u; // uint source operand 0
uint4 src1u; // uint source operand 0
uint4 src2u; // uint source operand 0
uint4 dst0u; // uint destination operand
uint markUavRef; // the next store to UAV is fake and is used only to identify the uav slot
uint numOutputsForIncCounter; // Used for output to IncrementCounter
float padding1[27]; // struct size: 256 bytes
};
// RW structured buffer for Nvidia shader extensions
// Application needs to define NV_SHADER_EXTN_SLOT as a unused slot, which should be
// set using NvAPI_D3D11_SetNvShaderExtnSlot() call before creating the first shader that
// uses nvidia shader extensions. E.g before including this file in shader define it as:
// #define NV_SHADER_EXTN_SLOT u7
// For SM5.1, application needs to define NV_SHADER_EXTN_REGISTER_SPACE as register space
// E.g. before including this file in shader define it as:
// #define NV_SHADER_EXTN_REGISTER_SPACE space2
// Note that other operations to this UAV will be ignored so application
// should bind a null resource
#ifdef NV_SHADER_EXTN_REGISTER_SPACE
RWStructuredBuffer<NvShaderExtnStruct> g_NvidiaExt : register( NV_SHADER_EXTN_SLOT, NV_SHADER_EXTN_REGISTER_SPACE );
#else
RWStructuredBuffer<NvShaderExtnStruct> g_NvidiaExt : register( NV_SHADER_EXTN_SLOT );
#endif
//----------------------------------------------------------------------------//
// the exposed SHFL instructions accept a mask parameter in src2
// To compute lane mask from width of segment:
// minLaneID : currentLaneId & src2[12:8]
// maxLaneID : minLaneId | (src2[4:0] & ~src2[12:8])
// where [minLaneId, maxLaneId] defines the segment where currentLaneId belongs
// we always set src2[4:0] to 11111 (0x1F), and set src2[12:8] as (32 - width)
int __NvGetShflMaskFromWidth(uint width)
{
return ((NV_WARP_SIZE - width) << 8) | 0x1F;
}
//----------------------------------------------------------------------------//
void __NvReferenceUAVForOp(RWByteAddressBuffer uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav.Store(index, 0);
}
void __NvReferenceUAVForOp(RWTexture1D<float2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = float2(0,0);
}
void __NvReferenceUAVForOp(RWTexture2D<float2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = float2(0,0);
}
void __NvReferenceUAVForOp(RWTexture3D<float2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = float2(0,0);
}
void __NvReferenceUAVForOp(RWTexture1D<float4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = float4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture2D<float4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = float4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture3D<float4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = float4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture1D<float> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = 0.0f;
}
void __NvReferenceUAVForOp(RWTexture2D<float> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = 0.0f;
}
void __NvReferenceUAVForOp(RWTexture3D<float> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = 0.0f;
}
void __NvReferenceUAVForOp(RWTexture1D<uint2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = uint2(0,0);
}
void __NvReferenceUAVForOp(RWTexture2D<uint2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = uint2(0,0);
}
void __NvReferenceUAVForOp(RWTexture3D<uint2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = uint2(0,0);
}
void __NvReferenceUAVForOp(RWTexture1D<uint4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = uint4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture2D<uint4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = uint4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture3D<uint4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = uint4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture1D<uint> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = 0;
}
void __NvReferenceUAVForOp(RWTexture2D<uint> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = 0;
}
void __NvReferenceUAVForOp(RWTexture3D<uint> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = 0;
}
void __NvReferenceUAVForOp(RWTexture1D<int2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = int2(0,0);
}
void __NvReferenceUAVForOp(RWTexture2D<int2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = int2(0,0);
}
void __NvReferenceUAVForOp(RWTexture3D<int2> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = int2(0,0);
}
void __NvReferenceUAVForOp(RWTexture1D<int4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = int4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture2D<int4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = int4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture3D<int4> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = int4(0,0,0,0);
}
void __NvReferenceUAVForOp(RWTexture1D<int> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[index] = 0;
}
void __NvReferenceUAVForOp(RWTexture2D<int> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint2(index,index)] = 0;
}
void __NvReferenceUAVForOp(RWTexture3D<int> uav)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].markUavRef = 1;
uav[uint3(index,index,index)] = 0;
}
//----------------------------------------------------------------------------//
// ATOMIC op sub-opcodes
#define NV_EXTN_ATOM_AND 0
#define NV_EXTN_ATOM_OR 1
#define NV_EXTN_ATOM_XOR 2
#define NV_EXTN_ATOM_ADD 3
#define NV_EXTN_ATOM_MAX 6
#define NV_EXTN_ATOM_MIN 7
#define NV_EXTN_ATOM_SWAP 8
#define NV_EXTN_ATOM_CAS 9
//----------------------------------------------------------------------------//
// performs Atomic operation on two consecutive fp16 values in the given UAV
// the uint paramater 'fp16x2Val' is treated as two fp16 values
// the passed sub-opcode 'op' should be an immediate constant
// byteAddress must be multiple of 4
// the returned value are the two fp16 values packed into a single uint
uint __NvAtomicOpFP16x2(RWByteAddressBuffer uav, uint byteAddress, uint fp16x2Val, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = byteAddress;
g_NvidiaExt[index].src1u.x = fp16x2Val;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
return g_NvidiaExt[index].dst0u.x;
}
//----------------------------------------------------------------------------//
// performs Atomic operation on a R16G16_FLOAT UAV at the given address
// the uint paramater 'fp16x2Val' is treated as two fp16 values
// the passed sub-opcode 'op' should be an immediate constant
// the returned value are the two fp16 values (.x and .y components) packed into a single uint
// Warning: Behaviour of these set of functions is undefined if the UAV is not
// of R16G16_FLOAT format (might result in app crash or TDR)
uint __NvAtomicOpFP16x2(RWTexture1D<float2> uav, uint address, uint fp16x2Val, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = address;
g_NvidiaExt[index].src1u.x = fp16x2Val;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
return g_NvidiaExt[index].dst0u.x;
}
uint __NvAtomicOpFP16x2(RWTexture2D<float2> uav, uint2 address, uint fp16x2Val, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xy = address;
g_NvidiaExt[index].src1u.x = fp16x2Val;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
return g_NvidiaExt[index].dst0u.x;
}
uint __NvAtomicOpFP16x2(RWTexture3D<float2> uav, uint3 address, uint fp16x2Val, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xyz = address;
g_NvidiaExt[index].src1u.x = fp16x2Val;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
return g_NvidiaExt[index].dst0u.x;
}
//----------------------------------------------------------------------------//
// performs Atomic operation on a R16G16B16A16_FLOAT UAV at the given address
// the uint2 paramater 'fp16x2Val' is treated as four fp16 values
// i.e, fp16x2Val.x = uav.xy and fp16x2Val.y = uav.yz
// the passed sub-opcode 'op' should be an immediate constant
// the returned value are the four fp16 values (.xyzw components) packed into uint2
// Warning: Behaviour of these set of functions is undefined if the UAV is not
// of R16G16B16A16_FLOAT format (might result in app crash or TDR)
uint2 __NvAtomicOpFP16x2(RWTexture1D<float4> uav, uint address, uint2 fp16x2Val, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
// break it down into two fp16x2 atomic ops
uint2 retVal;
// first op has x-coordinate = x * 2
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = address * 2;
g_NvidiaExt[index].src1u.x = fp16x2Val.x;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
retVal.x = g_NvidiaExt[index].dst0u.x;
// second op has x-coordinate = x * 2 + 1
index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = address * 2 + 1;
g_NvidiaExt[index].src1u.x = fp16x2Val.y;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
retVal.y = g_NvidiaExt[index].dst0u.x;
return retVal;
}
uint2 __NvAtomicOpFP16x2(RWTexture2D<float4> uav, uint2 address, uint2 fp16x2Val, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
// break it down into two fp16x2 atomic ops
uint2 retVal;
// first op has x-coordinate = x * 2
uint2 addressTemp = uint2(address.x * 2, address.y);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xy = addressTemp;
g_NvidiaExt[index].src1u.x = fp16x2Val.x;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
retVal.x = g_NvidiaExt[index].dst0u.x;
// second op has x-coordinate = x * 2 + 1
addressTemp.x++;
index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xy = addressTemp;
g_NvidiaExt[index].src1u.x = fp16x2Val.y;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
retVal.y = g_NvidiaExt[index].dst0u.x;
return retVal;
}
uint2 __NvAtomicOpFP16x2(RWTexture3D<float4> uav, uint3 address, uint2 fp16x2Val, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
// break it down into two fp16x2 atomic ops
uint2 retVal;
// first op has x-coordinate = x * 2
uint3 addressTemp = uint3(address.x * 2, address.y, address.z);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xyz = addressTemp;
g_NvidiaExt[index].src1u.x = fp16x2Val.x;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
retVal.x = g_NvidiaExt[index].dst0u.x;
// second op has x-coordinate = x * 2 + 1
addressTemp.x++;
index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xyz = addressTemp;
g_NvidiaExt[index].src1u.x = fp16x2Val.y;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP16_ATOMIC;
retVal.y = g_NvidiaExt[index].dst0u.x;
return retVal;
}
uint __fp32x2Tofp16x2(float2 val)
{
return (f32tof16(val.y)<<16) | f32tof16(val.x) ;
}
uint2 __fp32x4Tofp16x4(float4 val)
{
return uint2( (f32tof16(val.y)<<16) | f32tof16(val.x), (f32tof16(val.w)<<16) | f32tof16(val.z) ) ;
}
//----------------------------------------------------------------------------//
// FP32 Atomic functions
// performs Atomic operation treating the uav as float (fp32) values
// the passed sub-opcode 'op' should be an immediate constant
// byteAddress must be multiple of 4
float __NvAtomicAddFP32(RWByteAddressBuffer uav, uint byteAddress, float val)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = byteAddress;
g_NvidiaExt[index].src1u.x = asuint(val); // passing as uint to make it more convinient for the driver to translate
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_ADD;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP32_ATOMIC;
return asfloat(g_NvidiaExt[index].dst0u.x);
}
float __NvAtomicAddFP32(RWTexture1D<float> uav, uint address, float val)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = address;
g_NvidiaExt[index].src1u.x = asuint(val);
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_ADD;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP32_ATOMIC;
return asfloat(g_NvidiaExt[index].dst0u.x);
}
float __NvAtomicAddFP32(RWTexture2D<float> uav, uint2 address, float val)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xy = address;
g_NvidiaExt[index].src1u.x = asuint(val);
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_ADD;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP32_ATOMIC;
return asfloat(g_NvidiaExt[index].dst0u.x);
}
float __NvAtomicAddFP32(RWTexture3D<float> uav, uint3 address, float val)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xyz = address;
g_NvidiaExt[index].src1u.x = asuint(val);
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_ADD;
g_NvidiaExt[index].opcode = NV_EXTN_OP_FP32_ATOMIC;
return asfloat(g_NvidiaExt[index].dst0u.x);
}
//----------------------------------------------------------------------------//
// UINT64 Atmoic Functions
// The functions below performs atomic operation on the given UAV treating the value as uint64
// byteAddress must be multiple of 8
// The returned value is the value present in memory location before the atomic operation
// uint2 vector type is used to represent a single uint64 value with the x component containing the low 32 bits and y component the high 32 bits.
uint2 __NvAtomicCompareExchangeUINT64(RWByteAddressBuffer uav, uint byteAddress, uint2 compareValue, uint2 value)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = byteAddress;
g_NvidiaExt[index].src1u.xy = compareValue;
g_NvidiaExt[index].src1u.zw = value;
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_CAS;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint2 __NvAtomicOpUINT64(RWByteAddressBuffer uav, uint byteAddress, uint2 value, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = byteAddress;
g_NvidiaExt[index].src1u.xy = value;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint2 __NvAtomicCompareExchangeUINT64(RWTexture1D<uint2> uav, uint address, uint2 compareValue, uint2 value)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = address;
g_NvidiaExt[index].src1u.xy = compareValue;
g_NvidiaExt[index].src1u.zw = value;
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_CAS;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint2 __NvAtomicOpUINT64(RWTexture1D<uint2> uav, uint address, uint2 value, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = address;
g_NvidiaExt[index].src1u.xy = value;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint2 __NvAtomicCompareExchangeUINT64(RWTexture2D<uint2> uav, uint2 address, uint2 compareValue, uint2 value)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xy = address;
g_NvidiaExt[index].src1u.xy = compareValue;
g_NvidiaExt[index].src1u.zw = value;
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_CAS;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint2 __NvAtomicOpUINT64(RWTexture2D<uint2> uav, uint2 address, uint2 value, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xy = address;
g_NvidiaExt[index].src1u.xy = value;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint2 __NvAtomicCompareExchangeUINT64(RWTexture3D<uint2> uav, uint3 address, uint2 compareValue, uint2 value)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xyz = address;
g_NvidiaExt[index].src1u.xy = compareValue;
g_NvidiaExt[index].src1u.zw = value;
g_NvidiaExt[index].src2u.x = NV_EXTN_ATOM_CAS;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint2 __NvAtomicOpUINT64(RWTexture3D<uint2> uav, uint3 address, uint2 value, uint atomicOpType)
{
__NvReferenceUAVForOp(uav);
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.xyz = address;
g_NvidiaExt[index].src1u.xy = value;
g_NvidiaExt[index].src2u.x = atomicOpType;
g_NvidiaExt[index].opcode = NV_EXTN_OP_UINT64_ATOMIC;
return g_NvidiaExt[index].dst0u.xy;
}
uint4 __NvFootprint(uint texSpace, uint texIndex, uint smpSpace, uint smpIndex, uint texType, float3 location, uint footprintmode, uint gran, int3 offset = int3(0, 0, 0))
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = texIndex;
g_NvidiaExt[index].src0u.y = smpIndex;
g_NvidiaExt[index].src1u.xyz = asuint(location);
g_NvidiaExt[index].src1u.w = gran;
g_NvidiaExt[index].src3u.x = texSpace;
g_NvidiaExt[index].src3u.y = smpSpace;
g_NvidiaExt[index].src3u.z = texType;
g_NvidiaExt[index].src3u.w = footprintmode;
g_NvidiaExt[index].src4u.xyz = asuint(offset);
g_NvidiaExt[index].opcode = NV_EXTN_OP_FOOTPRINT;
g_NvidiaExt[index].numOutputsForIncCounter = 4;
// result is returned as the return value of IncrementCounter on fake UAV slot
uint4 op;
op.x = g_NvidiaExt.IncrementCounter();
op.y = g_NvidiaExt.IncrementCounter();
op.z = g_NvidiaExt.IncrementCounter();
op.w = g_NvidiaExt.IncrementCounter();
return op;
}
uint4 __NvFootprintBias(uint texSpace, uint texIndex, uint smpSpace, uint smpIndex, uint texType, float3 location, uint footprintmode, uint gran, float bias, int3 offset = int3(0, 0, 0))
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = texIndex;
g_NvidiaExt[index].src0u.y = smpIndex;
g_NvidiaExt[index].src1u.xyz = asuint(location);
g_NvidiaExt[index].src1u.w = gran;
g_NvidiaExt[index].src2u.x = asuint(bias);
g_NvidiaExt[index].src3u.x = texSpace;
g_NvidiaExt[index].src3u.y = smpSpace;
g_NvidiaExt[index].src3u.z = texType;
g_NvidiaExt[index].src3u.w = footprintmode;
g_NvidiaExt[index].src4u.xyz = asuint(offset);
g_NvidiaExt[index].opcode = NV_EXTN_OP_FOOTPRINT_BIAS;
g_NvidiaExt[index].numOutputsForIncCounter = 4;
// result is returned as the return value of IncrementCounter on fake UAV slot
uint4 op;
op.x = g_NvidiaExt.IncrementCounter();
op.y = g_NvidiaExt.IncrementCounter();
op.z = g_NvidiaExt.IncrementCounter();
op.w = g_NvidiaExt.IncrementCounter();
return op;
}
uint4 __NvFootprintLevel(uint texSpace, uint texIndex, uint smpSpace, uint smpIndex, uint texType, float3 location, uint footprintmode, uint gran, float lodLevel, int3 offset = int3(0, 0, 0))
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = texIndex;
g_NvidiaExt[index].src0u.y = smpIndex;
g_NvidiaExt[index].src1u.xyz = asuint(location);
g_NvidiaExt[index].src1u.w = gran;
g_NvidiaExt[index].src2u.x = asuint(lodLevel);
g_NvidiaExt[index].src3u.x = texSpace;
g_NvidiaExt[index].src3u.y = smpSpace;
g_NvidiaExt[index].src3u.z = texType;
g_NvidiaExt[index].src3u.w = footprintmode;
g_NvidiaExt[index].src4u.xyz = asuint(offset);
g_NvidiaExt[index].opcode = NV_EXTN_OP_FOOTPRINT_LEVEL;
g_NvidiaExt[index].numOutputsForIncCounter = 4;
// result is returned as the return value of IncrementCounter on fake UAV slot
uint4 op;
op.x = g_NvidiaExt.IncrementCounter();
op.y = g_NvidiaExt.IncrementCounter();
op.z = g_NvidiaExt.IncrementCounter();
op.w = g_NvidiaExt.IncrementCounter();
return op;
}
uint4 __NvFootprintGrad(uint texSpace, uint texIndex, uint smpSpace, uint smpIndex, uint texType, float3 location, uint footprintmode, uint gran, float3 ddx, float3 ddy, int3 offset = int3(0, 0, 0))
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = texIndex;
g_NvidiaExt[index].src0u.y = smpIndex;
g_NvidiaExt[index].src1u.xyz = asuint(location);
g_NvidiaExt[index].src1u.w = gran;
g_NvidiaExt[index].src2u.xyz = asuint(ddx);
g_NvidiaExt[index].src5u.xyz = asuint(ddy);
g_NvidiaExt[index].src3u.x = texSpace;
g_NvidiaExt[index].src3u.y = smpSpace;
g_NvidiaExt[index].src3u.z = texType;
g_NvidiaExt[index].src3u.w = footprintmode;
g_NvidiaExt[index].src4u.xyz = asuint(offset);
g_NvidiaExt[index].opcode = NV_EXTN_OP_FOOTPRINT_GRAD;
g_NvidiaExt[index].numOutputsForIncCounter = 4;
// result is returned as the return value of IncrementCounter on fake UAV slot
uint4 op;
op.x = g_NvidiaExt.IncrementCounter();
op.y = g_NvidiaExt.IncrementCounter();
op.z = g_NvidiaExt.IncrementCounter();
op.w = g_NvidiaExt.IncrementCounter();
return op;
}
// returns value of special register - specify subopcode from any of NV_SPECIALOP_* specified in nvShaderExtnEnums.h - other opcodes undefined behavior
uint __NvGetSpecial(uint subOpCode)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].opcode = NV_EXTN_OP_GET_SPECIAL;
g_NvidiaExt[index].src0u.x = subOpCode;
return g_NvidiaExt.IncrementCounter();
}
// predicate is returned in laneValid indicating if srcLane is in range and val from specified lane is returned.
int __NvShflGeneric(int val, uint srcLane, uint maskClampVal, out uint laneValid)
{
uint index = g_NvidiaExt.IncrementCounter();
g_NvidiaExt[index].src0u.x = val; // variable to be shuffled
g_NvidiaExt[index].src0u.y = srcLane; // source lane
g_NvidiaExt[index].src0u.z = maskClampVal;
g_NvidiaExt[index].opcode = NV_EXTN_OP_SHFL_GENERIC;
g_NvidiaExt[index].numOutputsForIncCounter = 2;
laneValid = asuint(g_NvidiaExt.IncrementCounter());
return g_NvidiaExt.IncrementCounter();
}