-
Notifications
You must be signed in to change notification settings - Fork 310
/
config.py
217 lines (181 loc) · 8.66 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import dnnlib
import argparse
import sys
import dnnlib.submission.submit as submit
import validation
# Submit config
# ------------------------------------------------------------------------------------------
submit_config = dnnlib.SubmitConfig()
submit_config.run_dir_root = 'results'
submit_config.run_dir_ignore += ['datasets', 'results']
desc = "autoencoder"
# Tensorflow config
# ------------------------------------------------------------------------------------------
tf_config = dnnlib.EasyDict()
tf_config["graph_options.place_pruned_graph"] = True
# Network config
# ------------------------------------------------------------------------------------------
net_config = dnnlib.EasyDict(func_name="network.autoencoder")
# Optimizer config
# ------------------------------------------------------------------------------------------
optimizer_config = dnnlib.EasyDict(beta1=0.9, beta2=0.99, epsilon=1e-8)
# Noise augmentation config
gaussian_noise_config = dnnlib.EasyDict(
func_name='train.AugmentGaussian',
train_stddev_rng_range=(0.0, 50.0),
validation_stddev=25.0
)
poisson_noise_config = dnnlib.EasyDict(
func_name='train.AugmentPoisson',
lam_max=50.0
)
# ------------------------------------------------------------------------------------------
# Preconfigured validation sets
datasets = {
'kodak': dnnlib.EasyDict(dataset_dir='datasets/kodak'),
'bsd300': dnnlib.EasyDict(dataset_dir='datasets/bsd300'),
'set14': dnnlib.EasyDict(dataset_dir='datasets/set14')
}
default_validation_config = datasets['kodak']
corruption_types = {
'gaussian': gaussian_noise_config,
'poisson': poisson_noise_config
}
# Train config
# ------------------------------------------------------------------------------------------
train_config = dnnlib.EasyDict(
iteration_count=300000,
eval_interval=1000,
minibatch_size=4,
run_func_name="train.train",
learning_rate=0.0003,
ramp_down_perc=0.3,
noise=gaussian_noise_config,
# noise=poisson_noise_config,
noise2noise=True,
train_tfrecords='datasets/imagenet_val_raw.tfrecords',
validation_config=default_validation_config
)
# Validation run config
# ------------------------------------------------------------------------------------------
validate_config = dnnlib.EasyDict(
run_func_name="validation.validate",
dataset=default_validation_config,
network_snapshot=None,
noise=gaussian_noise_config
)
# ------------------------------------------------------------------------------------------
# jhellsten quota group
def error(*print_args):
print (*print_args)
sys.exit(1)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
# ------------------------------------------------------------------------------------------
examples='''examples:
# Train a network using the BSD300 dataset:
python %(prog)s train --train-tfrecords=datasets/bsd300.tfrecords
# Run a set of images through a pre-trained network:
python %(prog)s validate --network-snapshot=results/network_final.pickle --dataset-dir=datasets/kodak
'''
if __name__ == "__main__":
def train(args):
if args:
n2n = args.noise2noise if 'noise2noise' in args else True
train_config.noise2noise = n2n
if 'long_train' in args and args.long_train:
train_config.iteration_count = 500000
train_config.eval_interval = 5000
train_config.ramp_down_perc = 0.5
else:
print ('running with defaults in train_config')
noise = 'gaussian'
if 'noise' in args:
if args.noise not in corruption_types:
error('Unknown noise type', args.noise)
else:
noise = args.noise
train_config.noise = corruption_types[noise]
if train_config.noise2noise:
submit_config.run_desc += "-n2n"
else:
submit_config.run_desc += "-n2c"
if 'train_tfrecords' in args and args.train_tfrecords is not None:
train_config.train_tfrecords = submit.get_path_from_template(args.train_tfrecords)
print (train_config)
dnnlib.submission.submit.submit_run(submit_config, **train_config)
def validate(args):
if submit_config.submit_target != dnnlib.SubmitTarget.LOCAL:
print ('Command line overrides currently supported only in local runs for the validate subcommand')
sys.exit(1)
if args.dataset_dir is None:
error('Must select dataset with --dataset-dir')
else:
validate_config.dataset = {
'dataset_dir': args.dataset_dir
}
if args.noise not in corruption_types:
error('Unknown noise type', args.noise)
validate_config.noise = corruption_types[args.noise]
if args.network_snapshot is None:
error('Must specify trained network filename with --network-snapshot')
validate_config.network_snapshot = args.network_snapshot
dnnlib.submission.submit.submit_run(submit_config, **validate_config)
def infer_image(args):
if submit_config.submit_target != dnnlib.SubmitTarget.LOCAL:
print ('Command line overrides currently supported only in local runs for the validate subcommand')
sys.exit(1)
if args.image is None:
error('Must specify image file with --image')
if args.out is None:
error('Must specify output image file with --out')
if args.network_snapshot is None:
error('Must specify trained network filename with --network-snapshot')
# Note: there's no dnnlib.submission.submit_run here. This is for quick interactive
# testing, not for long-running training or validation runs.
validation.infer_image(args.network_snapshot, args.image, args.out)
# Train by default
parser = argparse.ArgumentParser(
description='Train a network or run a set of images through a trained network.',
epilog=examples,
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument('--desc', default='', help='Append desc to the run descriptor string')
parser.add_argument('--run-dir-root', help='Working dir for a training or a validation run. Will contain training and validation results.')
subparsers = parser.add_subparsers(help='Sub-commands', dest='command')
parser_train = subparsers.add_parser('train', help='Train a network')
parser_train.add_argument('--noise2noise', nargs='?', type=str2bool, const=True, default=True, help='Noise2noise (--noise2noise=true) or noise2clean (--noise2noise=false). Default is noise2noise=true.')
parser_train.add_argument('--noise', default='gaussian', help='Type of noise corruption (one of: gaussian, poisson)')
parser_train.add_argument('--long-train', default=False, help='Train for a very long time (500k iterations or 500k*minibatch image)')
parser_train.add_argument('--train-tfrecords', help='Filename of the training set tfrecords file')
parser_train.set_defaults(func=train)
parser_validate = subparsers.add_parser('validate', help='Run a set of images through the network')
parser_validate.add_argument('--dataset-dir', help='Load all images from a directory (*.png, *.jpg/jpeg, *.bmp)')
parser_validate.add_argument('--network-snapshot', help='Trained network pickle')
parser_validate.add_argument('--noise', default='gaussian', help='Type of noise corruption (one of: gaussian, poisson)')
parser_validate.set_defaults(func=validate)
parser_infer_image = subparsers.add_parser('infer-image', help='Run one image through the network without adding any noise')
parser_infer_image.add_argument('--image', help='Image filename')
parser_infer_image.add_argument('--out', help='Output filename')
parser_infer_image.add_argument('--network-snapshot', help='Trained network pickle')
parser_infer_image.set_defaults(func=infer_image)
args = parser.parse_args()
submit_config.run_desc = desc + args.desc
if args.run_dir_root is not None:
submit_config.run_dir_root = args.run_dir_root
if args.command is not None:
args.func(args)
else:
# Train if no subcommand was given
train(args)