-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbumper_mpc.py
171 lines (146 loc) · 7.7 KB
/
bumper_mpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gurobipy as gp
from gurobipy import GRB
import matplotlib.pyplot as plt
import numpy as np
# Problem parameters
N = 100 # Number of time steps
T = 10 # Total time horizon (seconds)
x_start = 0 # Initial position (m)
v_start = 10 # Initial speed (m/s)
x_target = 100 # Target position (m)
v_target = 10 # Target speed (m/s)
v_max = 30 # Max speed outside the speed bump (m/s)
j_max = 3.0 # Max jerk (m/s^3)
v_desired = 15 # Desired speed to track (m/s)
lambda_speed_tracking = 1 # Weight for speed tracking in the objective
lambda_smooth_tracking = 1 # Weight for smooth acceleration in the objective
lambda_jerk_base = 1 # Base weight for smooth jerk in the objective
lambda_jerk_max = 10 # Maximum weight for jerk near the bump
speed_bump_min = 30 # Speed bump start (m)
speed_bump_max = 32 # Speed bump end (m)
speed_limit_bump = 2.5 # Speed limit on the bump (m/s)
speed_limit_bump_up = 2.5 # Speed limit on the bump (m/s)
a_min, a_max = -3, 3 # Acceleration limits (m/s^2)
delta_t = T / N # Time step size (s)
epsilon = 1e-6 # Small value for numerical stability
# Create Gurobi model
model = gp.Model("adaptive_jerk_longitudinal_control")
# Variables: position (x), speed (v), acceleration (a), jerk (j), binary indicators (delta)
x = model.addVars(N + 1, lb=0, name="x") # Position (m)
v = model.addVars(N + 1, lb=0, name="v") # Speed (m/s)
a = model.addVars(N + 1, lb=a_min, ub=a_max, name="a") # Acceleration (m/s^2)
j = model.addVars(N, lb=-j_max, ub=j_max, name="j") # Jerk (m/s^3)
delta1 = model.addVars(N + 1, vtype=GRB.BINARY, name="delta1") # Indicator for x >= speed_bump_min
delta2 = model.addVars(N + 1, vtype=GRB.BINARY, name="delta2") # Indicator for x <= speed_bump_max
delta3 = model.addVars(N + 1, vtype=GRB.BINARY, name="delta3") # Indicator for v <= speed_limit_bump
# Adaptive lambda_jerk variables
lambda_jerk = model.addVars(N, lb=lambda_jerk_base, ub=lambda_jerk_max, name="lambda_jerk")
# Auxiliary variables for quadratic terms
q_jerk = model.addVars(N, name="q_jerk")
# Initial conditions
model.addConstr(x[0] == x_start, "initial_position")
model.addConstr(v[0] == v_start, "initial_speed")
model.addConstr(a[0] == 0, "initial_acceleration") # Assuming initial acceleration is 0
model.addConstr(j[0] == 0, "initial_jerk") # Assuming initial jerk is 0
# Vehicle dynamics with jerk
for k in range(N):
model.addConstr(x[k + 1] == x[k] + delta_t * v[k] + 0.5 * a[k] * delta_t**2, name=f"dynamics_x_{k}")
model.addConstr(v[k + 1] == v[k] + delta_t * a[k] + 0.5 * j[k] * delta_t**2, name=f"dynamics_v_{k}")
model.addConstr(a[k + 1] == a[k] + delta_t * j[k], name=f"dynamics_a_{k}")
# Indicator constraints
for k in range(N + 1):
model.addGenConstrIndicator(delta1[k], True, x[k] >= speed_bump_min, name=f"delta1_true_{k}")
model.addGenConstrIndicator(delta1[k], False, x[k] <= speed_bump_min - epsilon, name=f"delta1_false_{k}")
model.addGenConstrIndicator(delta2[k], True, x[k] <= speed_bump_max, name=f"delta2_true_{k}")
model.addGenConstrIndicator(delta2[k], False, x[k] >= speed_bump_max + epsilon, name=f"delta2_false_{k}")
model.addGenConstrIndicator(delta3[k], True, v[k] <= speed_limit_bump, name=f"delta3_true_{k}")
model.addGenConstrIndicator(delta3[k], False, v[k] >= speed_limit_bump + epsilon, name=f"delta3_false_{k}")
model.addConstr(-delta1[k] + delta3[k] <= 0, name=f"relation1_{k}")
model.addConstr(-delta2[k] + delta3[k] <= 0, name=f"relation2_{k}")
model.addConstr(delta1[k] + delta2[k] - delta3[k] <= 1, name=f"relation3_{k}")
# Speed limit constraints
for k in range(N + 1):
model.addConstr(v[k] <= v_max, name=f"overall_speed_limit_{k}")
# Adaptive lambda_jerk constraints
influence_range = 10 # meters before and after the bump where jerk weight increases
for k in range(N):
model.addConstr(lambda_jerk[k] >= lambda_jerk_base +
(lambda_jerk_max - lambda_jerk_base) * (1 - (x[k] - speed_bump_min) / influence_range),
name=f"lambda_jerk_before_bump_{k}")
model.addConstr(lambda_jerk[k] >= lambda_jerk_base +
(lambda_jerk_max - lambda_jerk_base) * (1 - (speed_bump_max - x[k]) / influence_range),
name=f"lambda_jerk_after_bump_{k}")
# Auxiliary constraints for quadratic terms
for k in range(N):
model.addConstr(q_jerk[k] == j[k] * j[k], name=f"aux_q_jerk_{k}")
# Objective: minimize control effort (acceleration), jerk, and track desired speed
obj = lambda_smooth_tracking * gp.quicksum(a[k] * a[k] for k in range(N + 1)) + \
lambda_speed_tracking * gp.quicksum((v[k] - v_desired) * (v[k] - v_desired) for k in range(N + 1)) + \
gp.quicksum(lambda_jerk[k] * q_jerk[k] for k in range(N))
# Set the objective function
model.setObjective(obj, GRB.MINIMIZE)
# Solve the model
model.optimize()
# Extract solution if feasible
if model.status == GRB.OPTIMAL:
x_sol = [x[k].X for k in range(N + 1)]
v_sol = [v[k].X for k in range(N + 1)]
a_sol = [a[k].X for k in range(N + 1)]
j_sol = [j[k].X for k in range(N)]
lambda_jerk_sol = [lambda_jerk[k].X for k in range(N)]
# Plotting
plt.figure(figsize=(12, 12))
# Subplot 1: Velocity vs Position
plt.subplot(4, 1, 1)
plt.plot(x_sol, v_sol, label='Velocity')
plt.axvline(x=speed_bump_min, color='r', linestyle='--', label='Speed Bump Start')
plt.axvline(x=speed_bump_max, color='r', linestyle='--', label='Speed Bump End')
plt.axhline(y=speed_limit_bump, color='r', linestyle=':', label='Speed Bump Limit')
plt.fill_between([speed_bump_min, speed_bump_max], 0, max(v_sol), color='r', alpha=0.2, label='Speed Bump')
plt.axhline(y=v_max, color='g', linestyle='--', label='Max Speed')
plt.xlabel('Position (m)')
plt.ylabel('Velocity (m/s)')
plt.title('Vehicle Velocity vs Position')
plt.legend()
plt.grid(True)
plt.xlim(min(x_sol), max(x_sol))
# Subplot 2: Acceleration vs Position
plt.subplot(4, 1, 2)
plt.plot(x_sol[:-1], a_sol[:-1], label='Acceleration', color='b')
plt.axvline(x=speed_bump_min, color='r', linestyle='--', label='Speed Bump Start')
plt.axvline(x=speed_bump_max, color='r', linestyle='--', label='Speed Bump End')
plt.fill_between([speed_bump_min, speed_bump_max], min(a_sol), max(a_sol), color='r', alpha=0.2, label='Speed Bump')
plt.xlabel('Position (m)')
plt.ylabel('Acceleration (m/s^2)')
plt.title('Vehicle Acceleration vs Position')
plt.legend()
plt.grid(True)
plt.xlim(min(x_sol), max(x_sol))
# Subplot 3: Jerk vs Position
plt.subplot(4, 1, 3)
plt.plot(x_sol[:-1], j_sol, label='Jerk', color='g')
plt.axvline(x=speed_bump_min, color='r', linestyle='--', label='Speed Bump Start')
plt.axvline(x=speed_bump_max, color='r', linestyle='--', label='Speed Bump End')
plt.fill_between([speed_bump_min, speed_bump_max], min(j_sol), max(j_sol), color='r', alpha=0.2, label='Speed Bump')
plt.xlabel('Position (m)')
plt.ylabel('Jerk (m/s^3)')
plt.title('Vehicle Jerk vs Position')
plt.legend()
plt.grid(True)
plt.xlim(min(x_sol), max(x_sol))
# Subplot 4: Adaptive Lambda Jerk vs Position
plt.subplot(4, 1, 4)
plt.plot(x_sol[:-1], lambda_jerk_sol, label='Adaptive Lambda Jerk', color='purple')
plt.axvline(x=speed_bump_min, color='r', linestyle='--', label='Speed Bump Start')
plt.axvline(x=speed_bump_max, color='r', linestyle='--', label='Speed Bump End')
plt.fill_between([speed_bump_min, speed_bump_max], min(lambda_jerk_sol), max(lambda_jerk_sol), color='r', alpha=0.2, label='Speed Bump')
plt.xlabel('Position (m)')
plt.ylabel('Lambda Jerk')
plt.title('Adaptive Lambda Jerk vs Position')
plt.legend()
plt.grid(True)
plt.xlim(min(x_sol), max(x_sol))
plt.tight_layout()
plt.show()
else:
print("No feasible solution found")