-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
165 lines (122 loc) · 6.32 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import streamlit as st
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score,classification_report,plot_confusion_matrix
import plotly.graph_objects as go
st.set_option('deprecation.showPyplotGlobalUse', False)
# Stting Page layout, Page expands to full width
st.set_page_config(page_title='ML Hyperparameter Optimization App',layout='wide')
st.write("""
# Machine Learning Hyperparameter Optimization App
### **(Heart Disease Claasification)**
""")
df = pd.read_csv('dataset.csv')
#Displays the dataset
st.subheader('Dataset')
st.markdown('The **Heart Disease** dataset is used as the example.')
st.write(df.head(5))
# Sidebar - Specify parameter settings
#-----------------------------------------------------------------------------------------------------------------
st.sidebar.header('Set HyperParameters For Grid SearchCV')
split_size = st.sidebar.slider('Data split ratio (% for Training Set)', 50, 90, 80, 5)
st.sidebar.subheader('Learning Parameters')
parameter_n_estimators = st.sidebar.slider('Number of estimators for Random Forest (n_estimators)', 0, 500, (10,50), 50)
parameter_n_estimators_step = st.sidebar.number_input('Step size for n_estimators', 10)
st.sidebar.write('---')
parameter_max_features =st.sidebar.multiselect('Max Features (You can select multiple options)',['auto', 'sqrt', 'log2'],['auto'])
parameter_max_depth = st.sidebar.slider('Maximum depth', 5, 15, (5,8), 2)
parameter_max_depth_step=st.sidebar.number_input('Step size for max depht',1,3)
st.sidebar.write('---')
parameter_criterion = st.sidebar.selectbox('criterion',('gini', 'entropy'))
st.sidebar.write('---')
parameter_cross_validation=st.sidebar.slider('Number of Cross validation split', 2, 10)
st.sidebar.subheader('Other Parameters')
parameter_random_state = st.sidebar.slider('Seed number (random_state)', 0, 1000, 42, 1)
parameter_bootstrap = st.sidebar.select_slider('Bootstrap samples when building trees (bootstrap)', options=[True, False])
parameter_n_jobs = st.sidebar.select_slider('Number of jobs to run in parallel (n_jobs)', options=[1, -1])
n_estimators_range = np.arange(parameter_n_estimators[0], parameter_n_estimators[1]+parameter_n_estimators_step, parameter_n_estimators_step)
max_depth_range = np.arange(parameter_max_depth[0], parameter_max_depth[1]+parameter_max_depth_step, parameter_max_depth_step)
param_grid = dict(max_features=parameter_max_features, n_estimators=n_estimators_range,max_depth=max_depth_range)
#-----------------------------------------------------------------------------------------------------------------
#---------------------------------#
# Model building
def model(df):
Y = dataset['target']
X = dataset.drop(['target'], axis = 1)
# Data splitting
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=split_size)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
rf = RandomForestClassifier(random_state=parameter_random_state,
bootstrap=parameter_bootstrap,
n_jobs=parameter_n_jobs)
grid = GridSearchCV(estimator=rf, param_grid=param_grid, cv=parameter_cross_validation)
grid.fit(X_train, Y_train)
st.subheader('Model Performance')
Y_pred_test = grid.predict(X_test)
st.write('Accuracy score of given model')
st.info( accuracy_score(Y_test, Y_pred_test) )
st.write("The best parameters are %s with a score of %0.2f"
% (grid.best_params_, grid.best_score_))
st.subheader('Model Parameters')
st.write(grid.get_params())
#-----Process grid data-----#
grid_results = pd.concat([pd.DataFrame(grid.cv_results_["params"]),pd.DataFrame(grid.cv_results_["mean_test_score"], columns=["accuracy"])],axis=1)
# Segment data into groups based on the 2 hyperparameters
grid_contour = grid_results.groupby(['max_depth','n_estimators']).mean()
# Pivoting the data
grid_reset = grid_contour.reset_index()
grid_reset.columns = ['max_depth', 'n_estimators', 'accuracy']
grid_pivot = grid_reset.pivot('max_depth', 'n_estimators')
x = grid_pivot.columns.levels[1].values
y = grid_pivot.index.values
z = grid_pivot.values
#-----Plot-----#
layout = go.Layout(
xaxis=go.layout.XAxis(
title=go.layout.xaxis.Title(
text='n_estimators')
),
yaxis=go.layout.YAxis(
title=go.layout.yaxis.Title(
text='max_depth')
) )
fig = go.Figure(data= [go.Surface(z=z, y=y, x=x)], layout=layout )
fig.update_layout(title='Hyperparameter tuning',
scene = dict(
xaxis_title='n_estimators',
yaxis_title='max_depth',
zaxis_title='accuracy'),
autosize=False,
width=800, height=800,
margin=dict(l=65, r=50, b=65, t=90))
st.plotly_chart(fig)
st.subheader("Classification Report")
clf=classification_report(Y_test, Y_pred_test, labels=[0,1],output_dict=True)
st.write("""
### For Class 0(no disease) :
Precision : %0.2f
Recall : %0.2f
F1-score : %0.2f"""%(clf['0']['precision'],clf['0']['recall'],clf['0']['f1-score']))
st.write("""
### For Class 1(has disease) :
Precision : %0.3f
Recall : %0.3f
F1-score : %0.3f"""%(clf['1']['precision'],clf['1']['recall'],clf['1']['f1-score']))
st.write("""The best parameters are %s with a score of %0.2f
Now you can build new model using this three hyperparameteres"""
% (grid.best_params_, grid.best_score_))
st.subheader("Confusion Matrix")
plot_confusion_matrix(grid, X_test, Y_test,display_labels=['No disease','Has disease'])
st.pyplot()
#---------------------------------#
if st.button('Build Model'):
#some preprocessing steps
dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'])
model(dataset)