-
Notifications
You must be signed in to change notification settings - Fork 641
/
Copy pathutils.py
194 lines (166 loc) · 7.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from typing import List, Iterable, Tuple
import meep as mp
import numpy as onp
from . import ObjectiveQuantity, DesignRegion
# Meep field components used to compute adjoint sensitivities
_ADJOINT_FIELD_COMPONENTS = [mp.Ex, mp.Ey, mp.Ez]
# The frequency axis in the array returned by `mp._get_gradient()`
_GRADIENT_FREQ_AXIS = 1
def _make_at_least_nd(x: onp.ndarray, dims: int = 3) -> onp.ndarray:
"""Makes an array have at least the specified number of dimensions."""
return onp.reshape(x, x.shape + onp.maximum(dims - x.ndim, 0) * (1, ))
def calculate_vjps(
simulation: mp.Simulation,
design_regions: List[DesignRegion],
frequencies: List[float],
fwd_fields: List[List[onp.ndarray]],
adj_fields: List[List[onp.ndarray]],
design_variable_shapes: List[Tuple[int, ...]],
sum_freq_partials: bool = True,
) -> List[onp.ndarray]:
"""Calculates the VJP for a given set of forward and adjoint fields."""
vjps = [
design_region.get_gradient(
simulation,
adj_fields[i],
fwd_fields[i],
frequencies,
) for i, design_region in enumerate(design_regions)
]
if sum_freq_partials:
vjps = [
onp.sum(vjp, axis=_GRADIENT_FREQ_AXIS).reshape(shape)
for vjp, shape in zip(vjps, design_variable_shapes)
]
else:
vjps = [
vjp.reshape(shape + (-1, ))
for vjp, shape in zip(vjps, design_variable_shapes)
]
return vjps
def register_monitors(
monitors: List[ObjectiveQuantity],
frequencies: List[float],
) -> None:
"""Registers a list of monitors."""
for monitor in monitors:
monitor.register_monitors(frequencies)
def install_design_region_monitors(
simulation: mp.Simulation,
design_regions: List[DesignRegion],
frequencies: List[float],
) -> List[mp.DftFields]:
"""Installs DFT field monitors at the design regions of the simulation."""
design_region_monitors = [
simulation.add_dft_fields(
_ADJOINT_FIELD_COMPONENTS,
frequencies,
where=design_region.volume,
yee_grid=True,
decimation_factor=0
) for design_region in design_regions
]
return design_region_monitors
def gather_monitor_values(monitors: List[ObjectiveQuantity]) -> onp.ndarray:
"""Gathers the mode monitor overlap values as a rank 2 ndarray.
Args:
monitors: the mode monitors.
Returns:
a rank-2 ndarray, where the dimensions are (monitor, frequency), of dtype
complex128. Note that these values refer to the mode as oriented (i.e. they
are unidirectional).
"""
monitor_values = []
for monitor in monitors:
monitor_values.append(monitor())
monitor_values = onp.array(monitor_values)
assert monitor_values.ndim in [1, 2]
monitor_values = _make_at_least_nd(monitor_values, 2)
return monitor_values
def gather_design_region_fields(
simulation: mp.Simulation,
design_region_monitors: List[mp.DftFields],
frequencies: List[float],
) -> List[List[onp.ndarray]]:
"""Collects the design region DFT fields from the simulation.
Args:
simulation: the simulation object.
design_region_monitors: the installed design region monitors.
frequencies: the frequencies to monitor.
Returns:
A list of lists. Each entry (list) in the overall list corresponds one-to-
one with a declared design region. For each such contained list, the
entries correspond to the field components that are monitored. The entries
are ndarrays of rank 4 with dimensions (freq, x, y, (z-or-pad)).
The design region fields are sampled on the *Yee grid*. This makes them
fairly awkward to inspect directly. Their primary use case is supporting
gradient calculations.
"""
fwd_fields = []
for monitor in design_region_monitors:
fields_by_component = []
for component in _ADJOINT_FIELD_COMPONENTS:
fields_by_freq = []
for freq_idx, _ in enumerate(frequencies):
fields = simulation.get_dft_array(monitor, component, freq_idx)
fields_by_freq.append(_make_at_least_nd(fields))
fields_by_component.append(onp.stack(fields_by_freq))
fwd_fields.append(fields_by_component)
return fwd_fields
def validate_and_update_design(
design_regions: List[DesignRegion],
design_variables: Iterable[onp.ndarray]) -> None:
"""Validate the design regions and variables.
In particular the design variable should be 1,2,3-D and the design region
shape should match the design variable shape after dimension expansion.
The arguments are modified in place.
Args:
design_regions: List of mpa.DesignRegion,
design_variables: Iterable with numpy arrays representing design variables.
Raises:
ValueError if the validation of dimensions fails.
"""
for i, (design_region,
design_variable) in enumerate(zip(design_regions,
design_variables)):
if design_variable.ndim not in [1, 2, 3]:
raise ValueError(
'Design variables should be 1D, 2D, or 3D, but the design variable '
'at index {} had a shape of {}.'.format(
i, design_variable.shape))
design_region_shape = tuple(
int(x) for x in design_region.design_parameters.grid_size)
design_variable_padded_shape = design_variable.shape + (1, ) * (
3 - design_variable.ndim)
if design_variable_padded_shape != design_region_shape:
raise ValueError(
'The design variable at index {} with a shape of {} is '
'incompatible with the associated design region, which has a shape '
'of {}.'.format(i, design_variable.shape, design_region_shape))
design_variable = onp.asarray(design_variable, dtype=onp.float64)
# Update the design variable in Meep
design_region.update_design_parameters(design_variable.flatten())
def create_adjoint_sources(
monitors: Iterable[ObjectiveQuantity],
monitor_values_grad: onp.ndarray) -> List[mp.Source]:
monitor_values_grad = onp.asarray(monitor_values_grad,
dtype=onp.complex128)
if not onp.any(monitor_values_grad):
raise RuntimeError(
'The gradient of all monitor values is zero, which '
'means that no adjoint sources can be placed to set '
'up an adjoint simulation in Meep. Possible causes '
'could be:\n\n'
' * the forward simulation was not run for long enough '
'to allow the input pulse(s) to reach the monitors'
' * the monitor values are disconnected from the '
'objective function output.')
adjoint_sources = []
for monitor_idx, monitor in enumerate(monitors):
# `dj` for each monitor will have a shape of (num frequencies,)
dj = onp.asarray(monitor_values_grad[monitor_idx],
dtype=onp.complex128)
if onp.any(dj):
adjoint_sources += monitor.place_adjoint_source(dj)
assert adjoint_sources
return adjoint_sources