-
Notifications
You must be signed in to change notification settings - Fork 644
/
Copy pathsimulation.py
3086 lines (2353 loc) · 104 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division, print_function
import functools
import math
import numbers
import os
import re
import signal
import subprocess
import sys
import warnings
from collections import namedtuple
from collections import OrderedDict
from collections import Sequence
import numpy as np
import meep as mp
from meep.geom import Vector3, init_do_averaging
from meep.source import EigenModeSource, check_positive
import meep.visualization as vis
try:
basestring
except NameError:
basestring = str
try:
from ipywidgets import FloatProgress
from IPython.display import display
do_progress = True
except ImportError:
do_progress = False
# Send output from Meep, ctlgeom, and MPB to Python's stdout
mp.cvar.master_printf_callback = mp.py_master_printf_wrap
mp.set_ctl_printf_callback(mp.py_master_printf_wrap)
mp.set_mpb_printf_callback(mp.py_master_printf_wrap)
EigCoeffsResult = namedtuple('EigCoeffsResult', ['alpha', 'vgrp', 'kpoints', 'kdom', 'cscale'])
FluxData = namedtuple('FluxData', ['E', 'H'])
ForceData = namedtuple('ForceData', ['offdiag1', 'offdiag2', 'diag'])
NearToFarData = namedtuple('NearToFarData', ['F'])
def get_num_args(func):
if isinstance(func, Harminv):
return 2
return func.__code__.co_argcount
def vec(*args):
try:
# Check for vec(x, [y, [z]])
return mp._vec(*args)
except (TypeError, NotImplementedError):
try:
# Check for vec(iterable)
if len(args) != 1:
raise TypeError
return mp._vec(*args[0])
except (TypeError, NotImplementedError):
print("Expected an iterable with three or fewer floating point values")
print(" or something of the form vec(x, [y, [z]])")
raise
def py_v3_to_vec(dims, iterable, is_cylindrical=False):
v3 = Vector3(*iterable)
if dims == 1:
return mp.vec(v3.z)
elif dims == 2:
if is_cylindrical:
return mp.veccyl(v3.x, v3.z)
else:
v = mp.vec(v3.x, v3.y)
v.set_direction(mp.Z, v3.z) # for special_kz handling
return v
elif dims == 3:
return mp.vec(v3.x, v3.y, v3.z)
else:
raise ValueError("Invalid dimensions in Volume: {}".format(dims))
class PML(object):
def __init__(self, thickness,
direction=mp.ALL,
side=mp.ALL,
R_asymptotic=1e-15,
mean_stretch=1.0,
pml_profile=lambda u: u * u):
self.thickness = thickness
self.direction = direction
self.side = side
self.R_asymptotic = R_asymptotic
self.mean_stretch = mean_stretch
self.pml_profile = pml_profile
if direction == mp.ALL and side == mp.ALL:
self.swigobj = mp.pml(thickness, R_asymptotic, mean_stretch)
elif direction == mp.ALL:
self.swigobj = mp.pml(thickness, side, R_asymptotic, mean_stretch)
else:
self.swigobj = mp.pml(thickness, direction, side, R_asymptotic, mean_stretch)
@property
def R_asymptotic(self):
return self._R_asymptotic
@R_asymptotic.setter
def R_asymptotic(self, val):
self._R_asymptotic = check_positive('PML.R_asymptotic', val)
@property
def mean_stretch(self):
return self._mean_stretch
@mean_stretch.setter
def mean_stretch(self, val):
if val >= 1:
self._mean_stretch = val
else:
raise ValueError("PML.mean_stretch must be >= 1. Got {}".format(val))
class Absorber(PML):
pass
class Symmetry(object):
def __init__(self, direction, phase=1):
self.direction = direction
self.phase = complex(phase)
self.swigobj = None
class Rotate2(Symmetry):
pass
class Rotate4(Symmetry):
pass
class Mirror(Symmetry):
pass
class Identity(Symmetry):
pass
class Volume(object):
def __init__(self, center=Vector3(), size=Vector3(), dims=2, is_cylindrical=False, vertices=[]):
if len(vertices) == 0:
self.center = Vector3(*center)
self.size = Vector3(*size)
else:
vertices = np.array([np.array(i) for i in vertices])
self.center = Vector3(*np.mean(vertices,axis=0))
x_list = np.unique(vertices[:,0])
y_list = np.unique(vertices[:,1])
z_list = np.unique(vertices[:,2])
x_size = 0 if x_list.size == 1 else np.abs(np.diff(x_list)[0])
y_size = 0 if y_list.size == 1 else np.abs(np.diff(y_list)[0])
z_size = 0 if z_list.size == 1 else np.abs(np.diff(z_list)[0])
self.size = Vector3(x_size,y_size,z_size)
self.dims = dims
v1 = self.center - self.size.scale(0.5)
v2 = self.center + self.size.scale(0.5)
vec1 = py_v3_to_vec(self.dims, v1, is_cylindrical)
vec2 = py_v3_to_vec(self.dims, v2, is_cylindrical)
self.swigobj = mp.volume(vec1, vec2)
def get_vertices(self):
xmin = self.center.x - self.size.x/2
xmax = self.center.x + self.size.x/2
ymin = self.center.y - self.size.y/2
ymax = self.center.y + self.size.y/2
zmin = self.center.z - self.size.z/2
zmax = self.center.z + self.size.z/2
# Iterate over and remove duplicates for collapsed dimensions (i.e. min=max))
return [Vector3(x,y,z) for x in list(set([xmin,xmax])) for y in list(set([ymin,ymax])) for z in list(set([zmin,zmax]))]
def get_edges(self):
vertices = self.get_vertices()
edges = []
# Useful for importing weird geometries and the sizes are slightly off
def nearly_equal(a,b,sig_fig=10):
return a==b or (abs(a-b) < 10**(-sig_fig))
for iter1 in range(len(vertices)):
for iter2 in range(iter1+1,len(vertices)):
if ((iter1 != iter2) and
nearly_equal((vertices[iter1]-vertices[iter2]).norm(),self.size.x) or
nearly_equal((vertices[iter1]-vertices[iter2]).norm(),self.size.y) or
nearly_equal((vertices[iter1]-vertices[iter2]).norm(),self.size.z)):
edges.append([vertices[iter1],vertices[iter2]])
return edges
def pt_in_volume(self,pt):
xmin = self.center.x - self.size.x/2
xmax = self.center.x + self.size.x/2
ymin = self.center.y - self.size.y/2
ymax = self.center.y + self.size.y/2
zmin = self.center.z - self.size.z/2
zmax = self.center.z + self.size.z/2
if (pt.x >= xmin and pt.x <= xmax and pt.y >= ymin and pt.y <= ymax and pt.z >= zmin and pt.z <= zmax):
return True
else:
return False
class FluxRegion(object):
def __init__(self, center=None, size=Vector3(), direction=mp.AUTOMATIC, weight=1.0, volume=None):
if center is None and volume is None:
raise ValueError("Either center or volume required")
if volume:
self.center = volume.center
self.size = volume.size
else:
self.center = Vector3(*center)
self.size = Vector3(*size)
self.direction = direction
self.weight = complex(weight)
ModeRegion = FluxRegion
Near2FarRegion = FluxRegion
ForceRegion = FluxRegion
EnergyRegion = FluxRegion
class FieldsRegion(object):
def __init__(self, where=None, center=None, size=None):
if where:
self.center = where.center
self.size = where.size
else:
self.center = Vector3(*center) if center is not None else None
self.size = Vector3(*size) if size is not None else None
self.where = where
class DftObj(object):
"""Wrapper around dft objects that allows delayed initialization of the structure.
When splitting the structure into chunks for parallel simulations, we want to
know all of the details of the simulation in order to ensure that each processor
gets a similar amount of work. The problem with DFTs is that the 'add_flux' style
methods immediately initialize the structure and fields. So, if the user adds
multiple DFT objects to the simulation, the load balancing code only knows about
the first one and can't split the work up nicely. To circumvent this, we delay
the execution of the 'add_flux' methods as late as possible. When 'add_flux' (or
add_near2far, etc.) is called, we
1. Create an instance of the appropriate subclass of DftObj (DftForce, DftFlux,
etc.). Set its args property to the list of arguments passed to add_flux, and
set its func property to the 'real' add_flux, which is prefixed by an underscore.
2. Add this DftObj to the list Simulation.dft_objects. When we actually run the
simulation, we call Simulation._evaluate_dft_objects, which calls dft.func(*args)
for each dft in the list.
If the user tries to access a property or call a function on the DftObj before
Simulation._evaluate_dft_objects is called, then we initialize the C++ object
through swigobj_attr and return the property they requested.
"""
def __init__(self, func, args):
self.func = func
self.args = args
self.swigobj = None
def swigobj_attr(self, attr):
if self.swigobj is None:
self.swigobj = self.func(*self.args)
return getattr(self.swigobj, attr)
@property
def save_hdf5(self):
return self.swigobj_attr('save_hdf5')
@property
def load_hdf5(self):
return self.swigobj_attr('load_hdf5')
@property
def scale_dfts(self):
return self.swigobj_attr('scale_dfts')
@property
def remove(self):
return self.swigobj_attr('remove')
@property
def freq_min(self):
return self.swigobj_attr('freq_min')
@property
def dfreq(self):
return self.swigobj_attr('dfreq')
@property
def Nfreq(self):
return self.swigobj_attr('Nfreq')
@property
def where(self):
return self.swigobj_attr('where')
class DftFlux(DftObj):
def __init__(self, func, args):
super(DftFlux, self).__init__(func, args)
self.nfreqs = args[2]
self.regions = args[3]
self.num_components = 4
@property
def flux(self):
return self.swigobj_attr('flux')
@property
def E(self):
return self.swigobj_attr('E')
@property
def H(self):
return self.swigobj_attr('H')
@property
def cE(self):
return self.swigobj_attr('cE')
@property
def cH(self):
return self.swigobj_attr('cH')
@property
def normal_direction(self):
return self.swigobj_attr('normal_direction')
class DftForce(DftObj):
def __init__(self, func, args):
super(DftForce, self).__init__(func, args)
self.nfreqs = args[2]
self.regions = args[3]
self.num_components = 6
@property
def force(self):
return self.swigobj_attr('force')
@property
def offdiag1(self):
return self.swigobj_attr('offdiag1')
@property
def offdiag2(self):
return self.swigobj_attr('offdiag2')
@property
def diag(self):
return self.swigobj_attr('diag')
class DftNear2Far(DftObj):
def __init__(self, func, args):
super(DftNear2Far, self).__init__(func, args)
self.nfreqs = args[2]
self.nperiods = args[3]
self.regions = args[4]
self.num_components = 4
@property
def farfield(self):
return self.swigobj_attr('farfield')
@property
def save_farfields(self):
return self.swigobj_attr('save_farfields')
@property
def F(self):
return self.swigobj_attr('F')
@property
def eps(self):
return self.swigobj_attr('eps')
@property
def mu(self):
return self.swigobj_attr('mu')
def flux(self, direction, where, resolution):
return self.swigobj_attr('flux')(direction, where.swigobj, resolution)
class DftEnergy(DftObj):
def __init__(self, func, args):
super(DftEnergy, self).__init__(func, args)
self.nfreqs = args[2]
self.regions = args[3]
self.num_components = 12
@property
def electric(self):
return self.swigobj_attr('electric')
@property
def magnetic(self):
return self.swigobj_attr('magnetic')
@property
def total(self):
return self.swigobj_attr('total')
class DftFields(DftObj):
def __init__(self, func, args):
super(DftFields, self).__init__(func, args)
self.nfreqs = args[6]
self.regions = [FieldsRegion(where=args[1], center=args[2], size=args[3])]
self.num_components = len(args[0])
@property
def chunks(self):
return self.swigobj_attr('chunks')
Mode = namedtuple('Mode', ['freq', 'decay', 'Q', 'amp', 'err'])
class EigenmodeData(object):
def __init__(self, band_num, freq, group_velocity, k, swigobj, kdom):
self.band_num = band_num
self.freq = freq
self.group_velocity = group_velocity
self.k = k
self.swigobj = swigobj
self.kdom = kdom
def amplitude(self, point, component):
swig_point = mp.vec(point.x, point.y, point.z)
return mp.eigenmode_amplitude(self.swigobj, swig_point, component)
class Harminv(object):
def __init__(self, c, pt, fcen, df, mxbands=None):
self.c = c
self.pt = pt
self.fcen = fcen
self.df = df
self.mxbands = mxbands
self.data = []
self.data_dt = 0
self.modes = []
self.spectral_density = 1.1
self.Q_thresh = 50.0
self.rel_err_thresh = mp.inf
self.err_thresh = 0.01
self.rel_amp_thresh = -1.0
self.amp_thresh = -1.0
self.step_func = self._harminv()
def __call__(self, sim, todo):
self.step_func(sim, todo)
def _collect_harminv(self):
def _collect1(c, pt):
self.t0 = 0
def _collect2(sim):
self.data_dt = sim.meep_time() - self.t0
self.t0 = sim.meep_time()
self.data.append(sim.get_field_point(c, pt))
return _collect2
return _collect1
def _check_freqs(self, sim):
source_freqs = [(s.src.frequency, 0 if s.src.width == 0 else 1 / s.src.width)
for s in sim.sources
if hasattr(s.src, 'frequency')]
harminv_max = self.fcen + 0.5 * self.df
harminv_min = self.fcen - 0.5 * self.df
for sf in source_freqs:
sf_max = sf[0] + 0.5 * sf[1]
sf_min = sf[0] - 0.5 * sf[1]
if harminv_max > sf_max:
warn_fmt = "Harminv frequency {} is outside maximum Source frequency {}"
warnings.warn(warn_fmt.format(harminv_max, sf_max), RuntimeWarning)
if harminv_min < sf_min:
warn_fmt = "Harminv frequency {} is outside minimum Source frequency {}"
warnings.warn(warn_fmt.format(harminv_min, sf_min), RuntimeWarning)
def _analyze_harminv(self, sim, maxbands):
harminv_cols = ['frequency', 'imag. freq.', 'Q', '|amp|', 'amplitude', 'error']
display_run_data(sim, 'harminv', harminv_cols)
self._check_freqs(sim)
dt = self.data_dt if self.data_dt is not None else sim.fields.dt
bands = mp.py_do_harminv(self.data, dt, self.fcen - self.df / 2, self.fcen + self.df / 2, maxbands,
self.spectral_density, self.Q_thresh, self.rel_err_thresh, self.err_thresh,
self.rel_amp_thresh, self.amp_thresh)
modes = []
for freq, amp, err in bands:
Q = freq.real / (-2 * freq.imag) if freq.imag != 0 else float('inf')
modes.append(Mode(freq.real, freq.imag, Q, amp, err))
display_run_data(sim, 'harminv', [freq.real, freq.imag, Q, abs(amp), amp, err])
return modes
def _harminv(self):
def _harm(sim):
if self.mxbands is None or self.mxbands == 0:
mb = 100
else:
mb = self.mxbands
self.modes = self._analyze_harminv(sim, mb)
f1 = self._collect_harminv()
return _combine_step_funcs(at_end(_harm), f1(self.c, self.pt))
class Simulation(object):
def __init__(self,
cell_size,
resolution,
geometry=[],
sources=[],
eps_averaging=True,
dimensions=3,
boundary_layers=[],
symmetries=[],
force_complex_fields=False,
default_material=mp.Medium(),
m=0,
k_point=False,
kz_2d="complex",
extra_materials=[],
material_function=None,
epsilon_func=None,
epsilon_input_file='',
progress_interval=4,
subpixel_tol=1e-4,
subpixel_maxeval=100000,
ensure_periodicity=True,
num_chunks=0,
Courant=0.5,
accurate_fields_near_cylorigin=False,
filename_prefix=None,
output_volume=None,
output_single_precision=False,
load_structure='',
geometry_center=mp.Vector3(),
force_all_components=False,
split_chunks_evenly=True,
chunk_layout=None,
collect_stats=False):
self.cell_size = Vector3(*cell_size)
self.geometry = geometry
self.sources = sources
self.resolution = resolution
self.dimensions = dimensions
self.boundary_layers = boundary_layers
self.symmetries = symmetries
self.geometry_center = Vector3(*geometry_center)
self.eps_averaging = eps_averaging
self.subpixel_tol = subpixel_tol
self.subpixel_maxeval = subpixel_maxeval
self.ensure_periodicity = ensure_periodicity
self.extra_materials = extra_materials
self.default_material = default_material
self.epsilon_input_file = epsilon_input_file
self.num_chunks = num_chunks
self.Courant = Courant
self.global_d_conductivity = 0
self.global_b_conductivity = 0
self.k_point = k_point
self.fields = None
self.structure = None
self.accurate_fields_near_cylorigin = accurate_fields_near_cylorigin
self.m = m
self.force_complex_fields = force_complex_fields
self.progress_interval = progress_interval
self.init_sim_hooks = []
self.run_index = 0
self.filename_prefix = filename_prefix
self.output_append_h5 = None
self.output_single_precision = output_single_precision
self.output_volume = output_volume
self.last_eps_filename = ''
self.output_h5_hook = lambda fname: False
self.interactive = False
self.is_cylindrical = False
self.material_function = material_function
self.epsilon_func = epsilon_func
self.load_structure_file = load_structure
self.dft_objects = []
self._is_initialized = False
self.force_all_components = force_all_components
self.split_chunks_evenly = split_chunks_evenly
self.chunk_layout = chunk_layout
self.collect_stats = collect_stats
self.fragment_stats = None
self._output_stats = os.environ.get('MEEP_STATS', None)
self.special_kz = False
if self.cell_size.z == 0 and self.k_point and self.k_point.z != 0:
if kz_2d == "complex":
self.special_kz = True
self.force_complex_fields = True
elif kz_2d == "real/imag":
self.special_kz = True
self.force_complex_fields = False
elif kz_2d == "3d":
self.special_kz = False
else:
raise ValueError("Invalid kz_2d option: {} not in [complex, real/imag, 3d]".format(kz_2d))
# To prevent the user from having to specify `dims` and `is_cylindrical`
# to Volumes they create, the library will adjust them appropriately based
# on the settings in the Simulation instance. This method must be called on
# any user-defined Volume before passing it to meep via its `swigobj`.
def _fit_volume_to_simulation(self, vol):
return Volume(vol.center, vol.size, dims=self.dimensions, is_cylindrical=self.is_cylindrical)
# Every function that takes a user volume can be specified either by a volume
# (a Python Volume or a SWIG-wrapped meep::volume), or a center and a size
def _volume_from_kwargs(self, vol=None, center=None, size=None):
if vol:
if isinstance(vol, Volume):
# A pure Python Volume
return self._fit_volume_to_simulation(vol).swigobj
else:
# A SWIG-wrapped meep::volume
return vol
elif size is not None and center is not None:
return Volume(center=Vector3(*center), size=Vector3(*size), dims=self.dimensions,
is_cylindrical=self.is_cylindrical).swigobj
else:
raise ValueError("Need either a Volume, or a size and center")
def _infer_dimensions(self, k):
if self.dimensions == 3:
def use_2d(self, k):
zero_z = self.cell_size.z == 0
return zero_z and (not k or self.special_kz or k.z == 0)
if use_2d(self, k):
return 2
else:
return 3
return self.dimensions
def _get_valid_material_frequencies(self):
fmin = float('-inf')
fmax = float('inf')
all_materials = [go.material for go in self.geometry] + self.extra_materials
all_materials.append(self.default_material)
for mat in all_materials:
if isinstance(mat, mp.Medium) and mat.valid_freq_range:
if mat.valid_freq_range.min > fmin:
fmin = mat.valid_freq_range.min
if mat.valid_freq_range.max < fmax:
fmax = mat.valid_freq_range.max
return fmin, fmax
def _check_material_frequencies(self):
min_freq, max_freq = self._get_valid_material_frequencies()
source_freqs = [(s.src.frequency, 0 if s.src.width == 0 else 1 / s.src.width)
for s in self.sources
if hasattr(s.src, 'frequency')]
dft_freqs = []
for dftf in self.dft_objects:
dft_freqs.append(dftf.freq_min)
dft_freqs.append(dftf.freq_min + dftf.Nfreq * dftf.dfreq)
warn_src = ('Note: your sources include frequencies outside the range of validity of the ' +
'material models. This is fine as long as you eventually only look at outputs ' +
'(fluxes, resonant modes, etc.) at valid frequencies.')
warn_dft_fmt = "DFT frequency {} is out of material's range of {}-{}"
for sf in source_freqs:
if sf[0] + 0.5 * sf[1] > max_freq or sf[0] - 0.5 * sf[1] < min_freq:
warnings.warn(warn_src, RuntimeWarning)
for dftf in dft_freqs:
if dftf > max_freq or dftf < min_freq:
warnings.warn(warn_dft_fmt.format(dftf, min_freq, max_freq), RuntimeWarning)
def _create_grid_volume(self, k):
dims = self._infer_dimensions(k)
if dims == 0 or dims == 1:
gv = mp.vol1d(self.cell_size.z, self.resolution)
elif dims == 2:
self.dimensions = 2
gv = mp.vol2d(self.cell_size.x, self.cell_size.y, self.resolution)
elif dims == 3:
gv = mp.vol3d(self.cell_size.x, self.cell_size.y, self.cell_size.z, self.resolution)
elif dims == mp.CYLINDRICAL:
gv = mp.volcyl(self.cell_size.x, self.cell_size.z, self.resolution)
self.dimensions = 2
self.is_cylindrical = True
else:
raise ValueError("Unsupported dimentionality: {}".format(dims))
gv.center_origin()
gv.shift_origin(py_v3_to_vec(self.dimensions, self.geometry_center, self.is_cylindrical))
return gv
def _create_symmetries(self, gv):
sym = mp.symmetry()
# Initialize swig objects for each symmetry and combine them into one
for s in self.symmetries:
if isinstance(s, Identity):
s.swigobj = mp.identity()
elif isinstance(s, Rotate2):
s.swigobj = mp.rotate2(s.direction, gv)
sym += s.swigobj * complex(s.phase.real, s.phase.imag)
elif isinstance(s, Rotate4):
s.swigobj = mp.rotate4(s.direction, gv)
sym += s.swigobj * complex(s.phase.real, s.phase.imag)
elif isinstance(s, Mirror):
s.swigobj = mp.mirror(s.direction, gv)
sym += s.swigobj * complex(s.phase.real, s.phase.imag)
else:
s.swigobj = mp.symmetry()
return sym
def _get_dft_volumes(self):
volumes = [self._volume_from_kwargs(vol=r.where if hasattr(r, 'where') else None,
center=r.center, size=r.size)
for dft in self.dft_objects
for r in dft.regions]
return volumes
def _boundaries_to_vols_1d(self, boundaries):
v1 = []
for bl in boundaries:
cen = mp.Vector3(z=(self.cell_size.z / 2) - (0.5 * bl.thickness))
sz = mp.Vector3(z=bl.thickness)
if bl.side == mp.High or bl.side == mp.ALL:
v1.append(self._volume_from_kwargs(center=cen, size=sz))
if bl.side == mp.Low or bl.side == mp.ALL:
v1.append(self._volume_from_kwargs(center=-1 * cen, size=sz))
return v1
def _boundaries_to_vols_2d_3d(self, boundaries, cyl=False):
side_thickness = OrderedDict()
side_thickness['top'] = 0
side_thickness['bottom'] = 0
side_thickness['left'] = 0
side_thickness['right'] = 0
side_thickness['near'] = 0
side_thickness['far'] = 0
for bl in boundaries:
d = bl.direction
s = bl.side
if d == mp.X or d == mp.ALL:
if s == mp.High or s == mp.ALL:
side_thickness['right'] = bl.thickness
if s == mp.Low or s == mp.ALL:
side_thickness['left'] = bl.thickness
if d == mp.Y or d == mp.ALL:
if s == mp.High or s == mp.ALL:
side_thickness['top'] = bl.thickness
if s == mp.Low or s == mp.ALL:
side_thickness['bottom'] = bl.thickness
if self.dimensions == 3:
if d == mp.Z or d == mp.ALL:
if s == mp.High or s == mp.ALL:
side_thickness['far'] = bl.thickness
if s == mp.Low or s == mp.ALL:
side_thickness['near'] = bl.thickness
xmax = self.cell_size.x / 2
ymax = self.cell_size.z / 2 if cyl else self.cell_size.y / 2
zmax = self.cell_size.z / 2
ytot = self.cell_size.z if cyl else self.cell_size.y
def get_overlap_0(side, d):
if side == 'top' or side == 'bottom':
ydir = 1 if side == 'top' else -1
xsz = self.cell_size.x - (side_thickness['left'] + side_thickness['right'])
ysz = d
zsz = self.cell_size.z - (side_thickness['near'] + side_thickness['far'])
xcen = xmax - side_thickness['right'] - (xsz / 2)
ycen = ydir*ymax + (-ydir*0.5*d)
zcen = zmax - side_thickness['far'] - (zsz / 2)
elif side == 'left' or side == 'right':
xdir = 1 if side == 'right' else -1
xsz = d
ysz = ytot - (side_thickness['top'] + side_thickness['bottom'])
zsz = self.cell_size.z - (side_thickness['near'] + side_thickness['far'])
xcen = xdir*xmax + (-xdir*0.5*d)
ycen = ymax - side_thickness['top'] - (ysz / 2)
zcen = zmax - side_thickness['far'] - (zsz / 2)
elif side == 'near' or side == 'far':
zdir = 1 if side == 'far' else -1
xsz = self.cell_size.x - (side_thickness['left'] + side_thickness['right'])
ysz = ytot - (side_thickness['top'] + side_thickness['bottom'])
zsz = d
xcen = xmax - side_thickness['right'] - (xsz / 2)
ycen = ymax - side_thickness['top'] - (ysz / 2)
zcen = zdir*zmax + (-zdir*0.5*d)
if cyl:
cen = mp.Vector3(xcen, 0, ycen)
sz = mp.Vector3(xsz, 0, ysz)
else:
cen = mp.Vector3(xcen, ycen, zcen)
sz = mp.Vector3(xsz, ysz, zsz)
return self._volume_from_kwargs(center=cen, size=sz)
def get_overlap_1(side1, side2, d):
if side_thickness[side2] == 0:
return []
if side1 == 'top' or side1 == 'bottom':
ydir = 1 if side1 == 'top' else -1
ysz = d
ycen = ydir*ymax + (-ydir*0.5*d)
if side2 == 'left' or side2 == 'right':
xdir = 1 if side2 == 'right' else -1
xsz = side_thickness[side2]
zsz = self.cell_size.z - (side_thickness['near'] + side_thickness['far'])
xcen = xdir*xmax + (-xdir*0.5*side_thickness[side2])
zcen = zmax - side_thickness['far'] - (zsz / 2)
elif side2 == 'near' or side2 == 'far':
zdir = 1 if side2 == 'far' else -1
xsz = self.cell_size.x - (side_thickness['left'] + side_thickness['right'])
zsz = side_thickness[side2]
xcen = xmax - side_thickness['right'] - (xsz / 2)
zcen = zdir*zmax + (-zdir*0.5*side_thickness[side2])
elif side1 == 'near' or side1 == 'far':
xdir = 1 if side2 == 'right' else -1
zdir = 1 if side1 == 'far' else -1
xsz = side_thickness[side2]
ysz = self.cell_size.y - (side_thickness['top'] + side_thickness['bottom'])
zsz = d
xcen = xdir*xmax + (-xdir*0.5*side_thickness[side2])
ycen = ymax - side_thickness['top'] - (ysz / 2)
zcen = zdir*zmax + (-zdir*0.5*d)
if cyl:
cen = mp.Vector3(xcen, 0, ycen)
sz = mp.Vector3(xsz, 0, ysz)
else:
cen = mp.Vector3(xcen, ycen, zcen)
sz = mp.Vector3(xsz, ysz, zsz)
return self._volume_from_kwargs(center=cen, size=sz)
def get_overlap_2(side1, side2, side3, d):
if side_thickness[side2] == 0 or side_thickness[side3] == 0:
return []
xdir = 1 if side2 == 'right' else -1
ydir = 1 if side1 == 'top' else -1
zdir = 1 if side3 == 'far' else -1
xsz = side_thickness[side2]
ysz = d
zsz = side_thickness[side3]
xcen = xdir*xmax + (-xdir*0.5*xsz)
ycen = ydir*ymax + (-ydir*0.5*d)
zcen = zdir*zmax + (-zdir*0.5*zsz)
cen = mp.Vector3(xcen, ycen, zcen)
sz = mp.Vector3(xsz, ysz, zsz)
return self._volume_from_kwargs(center=cen, size=sz)
v1 = []
v2 = []
v3 = []
for side, thickness in side_thickness.items():
if thickness == 0:
continue
v1.append(get_overlap_0(side, thickness))
if side == 'top' or side == 'bottom':
v2.append(get_overlap_1(side, 'left', thickness))
v2.append(get_overlap_1(side, 'right', thickness))
if self.dimensions == 3:
v2.append(get_overlap_1(side, 'near', thickness))
v2.append(get_overlap_1(side, 'far', thickness))
v3.append(get_overlap_2(side, 'left', 'near', thickness))
v3.append(get_overlap_2(side, 'right', 'near', thickness))
v3.append(get_overlap_2(side, 'left', 'far', thickness))
v3.append(get_overlap_2(side, 'right', 'far', thickness))
if side == 'near' or side == 'far':
v2.append(get_overlap_1(side, 'left', thickness))
v2.append(get_overlap_1(side, 'right', thickness))
return [v for v in v1 if v], [v for v in v2 if v], [v for v in v3 if v]
def _boundary_layers_to_vol_list(self, boundaries):
"""Returns three lists of meep::volume objects. The first represents the boundary
regions with no overlaps. The second is regions where two boundaries overlap, and
the third is regions where three boundaries overlap
"""
vols1 = []
vols2 = []
vols3 = []
if self.dimensions == 1:
vols1 = self._boundaries_to_vols_1d(boundaries)
else:
vols1, vols2, vols3 = self._boundaries_to_vols_2d_3d(boundaries, self.is_cylindrical)
return vols1, vols2, vols3
def _make_fragment_lists(self, gv):
def convert_volumes(dft_obj):
volumes = []
for r in dft_obj.regions:
volumes.append(self._volume_from_kwargs(vol=r.where if hasattr(r, 'where') else None,
center=r.center, size=r.size))
return volumes
dft_data_list = [mp.dft_data(o.nfreqs, o.num_components, convert_volumes(o))
for o in self.dft_objects]
pmls = []
absorbers = []
for bl in self.boundary_layers:
if type(bl) is PML:
pmls.append(bl)
elif type(bl) is Absorber:
absorbers.append(bl)
pml_vols1, pml_vols2, pml_vols3 = self._boundary_layers_to_vol_list(pmls)
absorber_vols1, absorber_vols2, absorber_vols3 = self._boundary_layers_to_vol_list(absorbers)
absorber_vols = absorber_vols1 + absorber_vols2 + absorber_vols3
return (dft_data_list, pml_vols1, pml_vols2, pml_vols3, absorber_vols)
def _compute_fragment_stats(self, gv):
dft_data_list, pml_vols1, pml_vols2, pml_vols3, absorber_vols = self._make_fragment_lists(gv)
stats = mp.compute_fragment_stats(