-
Notifications
You must be signed in to change notification settings - Fork 630
/
structure.cpp
1091 lines (979 loc) · 36.1 KB
/
structure.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 2005-2021 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "meep.hpp"
#include "meep_internals.hpp"
#include "meepgeom.hpp"
using namespace std;
namespace meep {
structure::structure()
: Courant(0.5), v(D1) // Aaack, this is very hokey.
{
num_chunks = 0;
num_effort_volumes = 0;
effort_volumes = NULL;
effort = NULL;
outdir = ".";
S = identity();
a = 1;
dt = Courant / a;
shared_chunks = false;
}
typedef structure_chunk *structure_chunk_ptr;
structure::structure(const grid_volume &thegv, material_function &eps, const boundary_region &br,
const symmetry &s, int num, double Courant, bool use_anisotropic_averaging,
double tol, int maxeval)
: Courant(Courant), v(D1) // Aaack, this is very hokey.
{
outdir = ".";
shared_chunks = false;
if (!br.check_ok(thegv)) abort("invalid boundary absorbers for this grid_volume");
double tstart = wall_time();
choose_chunkdivision(thegv, num, br, s);
if (verbosity > 0) master_printf("time for choose_chunkdivision = %g s\n", wall_time() - tstart);
set_materials(eps, use_anisotropic_averaging, tol, maxeval);
}
structure::structure(const grid_volume &thegv, double eps(const vec &), const boundary_region &br,
const symmetry &s, int num, double Courant, bool use_anisotropic_averaging,
double tol, int maxeval)
: Courant(Courant), v(D1) // Aaack, this is very hokey.
{
outdir = ".";
shared_chunks = false;
if (!br.check_ok(thegv)) abort("invalid boundary absorbers for this grid_volume");
double tstart = wall_time();
choose_chunkdivision(thegv, num, br, s);
if (verbosity > 0) master_printf("time for choose_chunkdivision = %g s\n", wall_time() - tstart);
if (eps) {
simple_material_function epsilon(eps);
set_materials(epsilon, use_anisotropic_averaging, tol, maxeval);
}
}
static std::vector<int> get_prime_factors(int n) {
int initial_n = n;
std::vector<int> result;
while (n % 2 == 0) {
result.push_back(2);
n /= 2;
}
for (int i = 3; i <= sqrt(n); i += 2) {
while (n % i == 0) {
result.push_back(i);
n /= i;
}
}
if (n > 5) {
// If we end up with a prime number greater than 5, then start over with n -1 in order to get
// the largest number that is a multiple of 2, 3, or 5.
return get_prime_factors(initial_n - 1);
}
else if (n >= 2 && n <= 5) {
result.push_back(n);
}
return result;
}
static void split_by_cost(std::vector<int> factors, grid_volume gvol,
std::vector<grid_volume> &result) {
if (factors.size() == 0) {
result.push_back(gvol);
return;
}
int n = factors.back();
factors.pop_back();
std::vector<grid_volume> new_gvs = gvol.split_into_n(n);
if (new_gvs.size() != (size_t)n)
abort("Error splitting by cost: expected %d grid_volumes but got %zu", n, new_gvs.size());
for (int i = 0; i < n; ++i)
split_by_cost(factors, new_gvs[i], result);
}
void structure::choose_chunkdivision(const grid_volume &thegv, int desired_num_chunks,
const boundary_region &br, const symmetry &s) {
if (thegv.dim == Dcyl && thegv.get_origin().r() < 0) abort("r < 0 origins are not supported");
user_volume = thegv;
gv = thegv;
v = gv.surroundings();
S = s;
a = gv.a;
dt = Courant / a;
// create the chunks:
std::vector<grid_volume> chunk_volumes = meep::choose_chunkdivision(gv, v, desired_num_chunks, s);
int my_num_chunks = chunk_volumes.size();
// initialize effort volumes
num_effort_volumes = 1;
effort_volumes = new grid_volume[num_effort_volumes];
effort_volumes[0] = gv;
effort = new double[num_effort_volumes];
effort[0] = 1.0;
// Next, add effort volumes for PML boundary regions:
br.apply(this);
// Break off PML regions into their own chunks
num_chunks = 0;
chunks = new structure_chunk_ptr[my_num_chunks * num_effort_volumes];
for (size_t i = 0, stop = chunk_volumes.size(); i < stop; ++i) {
const int proc = i * count_processors() / my_num_chunks;
for (int j = 0; j < num_effort_volumes; ++j) {
grid_volume vc;
if (chunk_volumes[i].intersect_with(effort_volumes[j], &vc)) {
chunks[num_chunks] = new structure_chunk(vc, v, Courant, proc);
br.apply(this, chunks[num_chunks++]);
}
}
}
check_chunks();
if (meep_geom::fragment_stats::resolution != 0) {
// Save cost of each chunk's grid_volume
for (int i = 0; i < num_chunks; ++i) {
chunks[i]->cost = chunks[i]->gv.get_cost();
}
}
}
std::vector<grid_volume> choose_chunkdivision(grid_volume &gv, volume &v, int desired_num_chunks,
const symmetry &S) {
if (desired_num_chunks == 0) desired_num_chunks = count_processors();
if (gv.dim == Dcyl && gv.get_origin().r() < 0) abort("r < 0 origins are not supported");
// First, reduce overall grid_volume gv by symmetries:
if (S.multiplicity() > 1) {
bool break_this[3];
for (int dd = 0; dd < 3; dd++) {
const direction d = (direction)dd;
break_this[dd] = false;
for (int n = 0; n < S.multiplicity(); n++)
if (has_direction(gv.dim, d) &&
(S.transform(d, n).d != d || S.transform(d, n).flipped)) {
if (gv.num_direction(d) & 1 && !break_this[d] && verbosity > 0)
master_printf("Padding %s to even number of grid points.\n", direction_name(d));
break_this[dd] = true;
}
}
int break_mult = 1;
for (int d = 0; d < 3; d++) {
if (break_mult == S.multiplicity()) break_this[d] = false;
if (break_this[d]) {
break_mult *= 2;
if (verbosity > 0)
master_printf("Halving computational cell along direction %s\n",
direction_name(direction(d)));
gv = gv.halve((direction)d);
}
}
// Before padding, find the corresponding geometric grid_volume.
v = gv.surroundings();
// Pad the little cell in any direction that we've shrunk:
for (int d = 0; d < 3; d++)
if (break_this[d]) gv = gv.pad((direction)d);
}
// initialize effort volumes
int num_effort_volumes = 1;
grid_volume *effort_volumes = new grid_volume[num_effort_volumes];
effort_volumes[0] = gv;
double *effort = new double[num_effort_volumes];
effort[0] = 1.0;
std::vector<int> prime_factors = get_prime_factors(desired_num_chunks);
// We may have to use a different number of chunks than the user requested
int adjusted_num_chunks = 1;
for (size_t i = 0, stop = prime_factors.size(); i < stop; ++i)
adjusted_num_chunks *= prime_factors[i];
int my_num_chunks =
meep_geom::fragment_stats::split_chunks_evenly ? desired_num_chunks : adjusted_num_chunks;
// Finally, create the chunks:
std::vector<grid_volume> chunk_volumes;
if (meep_geom::fragment_stats::resolution == 0 ||
meep_geom::fragment_stats::split_chunks_evenly) {
if (verbosity > 0 && my_num_chunks > 1)
master_printf("Splitting into %d chunks evenly\n", my_num_chunks);
for (int i = 0; i < my_num_chunks; i++) {
grid_volume vi =
gv.split_by_effort(my_num_chunks, i, num_effort_volumes, effort_volumes, effort);
chunk_volumes.push_back(vi);
}
}
else {
if (verbosity > 0 && my_num_chunks > 1)
master_printf("Splitting into %d chunks by cost\n", my_num_chunks);
split_by_cost(prime_factors, gv, chunk_volumes);
}
delete [] effort_volumes;
delete [] effort;
return chunk_volumes;
}
double structure::estimated_cost(int process) {
double proc_cost = 0;
for (int i = 0; i < num_chunks; i++) {
if (chunks[i]->n_proc() == process) { proc_cost += chunks[i]->cost; }
}
return proc_cost;
}
void boundary_region::apply(structure *s) const {
if (has_direction(s->gv.dim, d) && s->user_volume.has_boundary(side, d) &&
s->user_volume.num_direction(d) > 1) {
switch (kind) {
case NOTHING_SPECIAL: break;
case PML: s->use_pml(d, side, thickness); break;
default: abort("unknown boundary region kind");
}
}
if (next) next->apply(s);
}
void boundary_region::apply(const structure *s, structure_chunk *sc) const {
if (has_direction(s->gv.dim, d) && s->user_volume.has_boundary(side, d) &&
s->user_volume.num_direction(d) > 1) {
switch (kind) {
case NOTHING_SPECIAL: break;
case PML:
sc->use_pml(d, thickness, s->user_volume.boundary_location(side, d), Rasymptotic,
mean_stretch, pml_profile, pml_profile_data, pml_profile_integral,
pml_profile_integral_u);
break;
default: abort("unknown boundary region kind");
}
}
if (next) next->apply(s, sc);
}
bool boundary_region::check_ok(const grid_volume &gv) const {
double thick[5][2];
FOR_DIRECTIONS(d) FOR_SIDES(s) { thick[d][s] = 0; }
for (const boundary_region *r = this; r; r = r->next) {
if (r->kind != NOTHING_SPECIAL && gv.num_direction(r->d) > 1 && has_direction(gv.dim, r->d) &&
gv.has_boundary(r->side, r->d)) {
if (r->thickness < 0 || thick[r->d][r->side] > 0) return false;
thick[r->d][r->side] = r->thickness;
}
}
LOOP_OVER_DIRECTIONS(gv.dim, d) {
if (thick[d][High] + thick[d][Low] > gv.interior().in_direction(d)) return false;
}
return true;
}
double pml_quadratic_profile(double u, void *d) {
(void)d;
return u * u;
}
boundary_region pml(double thickness, direction d, boundary_side side, double Rasymptotic,
double mean_stretch) {
return boundary_region(boundary_region::PML, thickness, Rasymptotic, mean_stretch,
pml_quadratic_profile, NULL, 1. / 3., 1. / 4., d, side, NULL);
}
boundary_region pml(double thickness, direction d, double Rasymptotic, double mean_stretch) {
return (pml(thickness, d, Low, Rasymptotic, mean_stretch) +
pml(thickness, d, High, Rasymptotic, mean_stretch));
}
boundary_region pml(double thickness, double Rasymptotic, double mean_stretch) {
boundary_region r;
for (int id = 0; id < 5; ++id)
r = r + pml(thickness, (direction)id, Rasymptotic, mean_stretch);
return r;
}
// First check that the chunk volumes do not intersect and that they add
// up to the total grid_volume
void structure::check_chunks() {
grid_volume vol_intersection;
for (int i = 0; i < num_chunks; i++)
for (int j = i + 1; j < num_chunks; j++)
if (chunks[i]->gv.intersect_with(chunks[j]->gv, &vol_intersection))
abort("chunks[%d] intersects with chunks[%d]\n", i, j);
size_t sum = 0;
for (int i = 0; i < num_chunks; i++) {
size_t grid_points = 1;
LOOP_OVER_DIRECTIONS(chunks[i]->gv.dim, d) { grid_points *= chunks[i]->gv.num_direction(d); }
sum += grid_points;
}
size_t v_grid_points = 1;
LOOP_OVER_DIRECTIONS(gv.dim, d) { v_grid_points *= gv.num_direction(d); }
if (sum != v_grid_points) abort("v_grid_points = %zd, sum(chunks) = %zd\n", v_grid_points, sum);
}
void structure::add_to_effort_volumes(const grid_volume &new_effort_volume, double extra_effort) {
grid_volume *temp_volumes =
new grid_volume[(2 * number_of_directions(gv.dim) + 1) * num_effort_volumes];
double *temp_effort = new double[(2 * number_of_directions(gv.dim) + 1) * num_effort_volumes];
// Intersect previous mat_volumes with this new_effort_volume
int counter = 0;
for (int j = 0; j < num_effort_volumes; j++) {
grid_volume intersection, others[6];
int num_others;
if (effort_volumes[j].intersect_with(new_effort_volume, &intersection, others, &num_others)) {
if (num_others > 1) {
printf("effort_volumes[%d] ", j);
effort_volumes[j].print();
printf("new_effort_volume ");
new_effort_volume.print();
// NOTE: this may not be a bug if this function is used for
// something other than PML.
abort("Did not expect num_others > 1 in add_to_effort_volumes\n");
}
temp_effort[counter] = extra_effort + effort[j];
temp_volumes[counter] = intersection;
counter++;
for (int k = 0; k < num_others; k++) {
temp_effort[counter] = effort[j];
temp_volumes[counter] = others[k];
counter++;
}
}
else {
temp_effort[counter] = effort[j];
temp_volumes[counter] = effort_volumes[j];
counter++;
}
}
delete[] effort_volumes;
delete[] effort;
effort_volumes = temp_volumes;
effort = temp_effort;
num_effort_volumes = counter;
}
structure::structure(const structure *s) : v(s->v) {
shared_chunks = false;
num_chunks = s->num_chunks;
outdir = s->outdir;
gv = s->gv;
S = s->S;
user_volume = s->user_volume;
chunks = new structure_chunk_ptr[num_chunks];
for (int i = 0; i < num_chunks; i++)
chunks[i] = new structure_chunk(s->chunks[i]);
num_effort_volumes = s->num_effort_volumes;
effort_volumes = new grid_volume[num_effort_volumes];
effort = new double[num_effort_volumes];
for (int i = 0; i < num_effort_volumes; i++) {
effort_volumes[i] = s->effort_volumes[i];
effort[i] = s->effort[i];
}
a = s->a;
Courant = s->Courant;
dt = s->dt;
}
structure::structure(const structure &s) : v(s.v) {
shared_chunks = false;
num_chunks = s.num_chunks;
outdir = s.outdir;
gv = s.gv;
S = s.S;
user_volume = s.user_volume;
chunks = new structure_chunk_ptr[num_chunks];
for (int i = 0; i < num_chunks; i++) {
chunks[i] = new structure_chunk(s.chunks[i]);
}
num_effort_volumes = s.num_effort_volumes;
effort_volumes = new grid_volume[num_effort_volumes];
effort = new double[num_effort_volumes];
for (int i = 0; i < num_effort_volumes; i++) {
effort_volumes[i] = s.effort_volumes[i];
effort[i] = s.effort[i];
}
a = s.a;
Courant = s.Courant;
dt = s.dt;
}
structure::~structure() {
for (int i = 0; i < num_chunks; i++) {
if (chunks[i]->refcount-- <= 1) delete chunks[i];
chunks[i] = NULL; // Just to be sure...
}
delete[] chunks;
delete[] effort_volumes;
delete[] effort;
}
/* To save memory, the structure chunks are shared with the
fields_chunk objects instead of making a copy. However, to
preserve the illusion that the structure and fields are
independent objects, we implement copy-on-write semantics. */
void structure::changing_chunks() { // call this whenever chunks are modified
if (shared_chunks) return; // shared view of chunks with fields, no COW
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->refcount > 1) { // this chunk is shared, so make a copy
chunks[i]->refcount--;
chunks[i] = new structure_chunk(chunks[i]);
}
}
void structure::set_materials(material_function &mat, bool use_anisotropic_averaging, double tol,
int maxeval) {
set_epsilon(mat, use_anisotropic_averaging, tol, maxeval);
if (mat.has_mu()) set_mu(mat, use_anisotropic_averaging, tol, maxeval);
FOR_D_AND_B(c) {
if (mat.has_conductivity(c)) set_conductivity(c, mat);
}
FOR_E_AND_H(c) {
if (mat.has_chi3(c)) set_chi3(c, mat);
}
FOR_E_AND_H(c) {
if (mat.has_chi2(c)) set_chi2(c, mat);
}
}
void structure::set_chi1inv(component c, material_function &eps, bool use_anisotropic_averaging,
double tol, int maxeval) {
changing_chunks();
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine())
chunks[i]->set_chi1inv(c, eps, use_anisotropic_averaging, tol, maxeval);
}
void structure::set_epsilon(material_function &eps, bool use_anisotropic_averaging, double tol,
int maxeval) {
double tstart = wall_time();
FOR_ELECTRIC_COMPONENTS(c) { set_chi1inv(c, eps, use_anisotropic_averaging, tol, maxeval); }
all_wait(); // sync so that timing results are accurate
if (verbosity > 0) master_printf("time for set_epsilon = %g s\n", wall_time() - tstart);
}
void structure::set_epsilon(double eps(const vec &), bool use_anisotropic_averaging, double tol,
int maxeval) {
simple_material_function epsilon(eps);
set_epsilon(epsilon, use_anisotropic_averaging, tol, maxeval);
}
void structure::set_mu(material_function &m, bool use_anisotropic_averaging, double tol,
int maxeval) {
double tstart = wall_time();
FOR_MAGNETIC_COMPONENTS(c) { set_chi1inv(c, m, use_anisotropic_averaging, tol, maxeval); }
all_wait(); // sync so that timing results are accurate
if (verbosity > 0) master_printf("time for set_mu = %g s\n", wall_time() - tstart);
}
void structure::set_mu(double mufunc(const vec &), bool use_anisotropic_averaging, double tol,
int maxeval) {
simple_material_function mu(mufunc);
set_mu(mu, use_anisotropic_averaging, tol, maxeval);
}
void structure::set_conductivity(component c, material_function &C) {
if (!gv.has_field(c)) return;
double tstart = wall_time();
changing_chunks();
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine()) chunks[i]->set_conductivity(c, C);
all_wait(); // sync so that timing results are accurate
if (verbosity > 0) master_printf("time for set_conductivity = %g s\n", wall_time() - tstart);
}
void structure::set_conductivity(component c, double Cfunc(const vec &)) {
simple_material_function conductivity(Cfunc);
set_conductivity(c, conductivity);
}
void structure::set_chi3(component c, material_function &eps) {
if (!gv.has_field(c)) return;
changing_chunks();
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine()) chunks[i]->set_chi3(c, eps);
}
void structure::set_chi3(material_function &eps) {
FOR_ELECTRIC_COMPONENTS(c) { set_chi3(c, eps); }
}
void structure::set_chi3(double eps(const vec &)) {
simple_material_function epsilon(eps);
set_chi3(epsilon);
}
void structure::set_chi2(component c, material_function &eps) {
changing_chunks();
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine()) chunks[i]->set_chi2(c, eps);
}
void structure::set_chi2(material_function &eps) {
FOR_ELECTRIC_COMPONENTS(c) { set_chi2(c, eps); }
}
void structure::set_chi2(double eps(const vec &)) {
simple_material_function epsilon(eps);
set_chi2(epsilon);
}
void structure::add_susceptibility(double sigma(const vec &), field_type ft,
const susceptibility &sus) {
simple_material_function sig(sigma);
add_susceptibility(sig, ft, sus);
}
void structure::add_susceptibility(material_function &sigma, field_type ft,
const susceptibility &sus) {
changing_chunks();
for (int i = 0; i < num_chunks; i++)
chunks[i]->add_susceptibility(sigma, ft, sus);
/* Now, synchronize the trivial_sigma array among all
chunks/processes. This will result in some "wasted" memory: if a
particular polarization P is needed on *any* chunk, it will be
allocated on *every* chunk. However, this greatly simplifies
handling of boundary conditions between chunks; see also the
susceptibility::needs_P function. (Note that the new
susceptibility object was added to the beginning of each chunk's
chiP[ft] list.) */
int trivial_sigma[NUM_FIELD_COMPONENTS][5];
FOR_COMPONENTS(c) FOR_DIRECTIONS(d) { trivial_sigma[c][d] = true; }
for (int i = 0; i < num_chunks; i++) {
const susceptibility *newsus = chunks[i]->chiP[ft];
FOR_FT_COMPONENTS(ft, c) FOR_DIRECTIONS(d) {
trivial_sigma[c][d] = trivial_sigma[c][d] && newsus->trivial_sigma[c][d];
}
}
int trivial_sigma_sync[NUM_FIELD_COMPONENTS][5];
and_to_all(&trivial_sigma[0][0], &trivial_sigma_sync[0][0], NUM_FIELD_COMPONENTS * 5);
for (int i = 0; i < num_chunks; i++) {
susceptibility *newsus = chunks[i]->chiP[ft];
FOR_FT_COMPONENTS(ft, c) FOR_DIRECTIONS(d) {
newsus->trivial_sigma[c][d] = trivial_sigma_sync[c][d];
}
}
}
void structure::use_pml(direction d, boundary_side b, double dx) {
if (dx <= 0.0) return;
grid_volume pml_volume = gv;
pml_volume.set_num_direction(d, int(dx * user_volume.a + 1 + 0.5)); // FIXME: exact value?
if (b == High)
pml_volume.set_origin(d, user_volume.big_corner().in_direction(d) -
pml_volume.num_direction(d) * 2);
const int v_to_user_shift =
(user_volume.little_corner().in_direction(d) - gv.little_corner().in_direction(d)) / 2;
if (b == Low && v_to_user_shift != 0)
pml_volume.set_num_direction(d, pml_volume.num_direction(d) + v_to_user_shift);
add_to_effort_volumes(pml_volume, 0.60); // FIXME: manual value for pml effort
}
bool structure::has_chi(component c, direction d) const {
int i;
for (i = 0; i < num_chunks && !chunks[i]->has_chi(c, d); i++)
;
return or_to_all(i < num_chunks);
}
bool structure_chunk::has_chi(component c, direction d) const {
return has_chisigma(c, d) || has_chi1inv(c, d);
}
bool structure_chunk::has_chisigma(component c, direction d) const {
if (is_mine()) {
for (susceptibility *sus = chiP[type(c)]; sus; sus = sus->next)
if (sus->sigma[c][d] && !sus->trivial_sigma[c][d]) return true;
}
return false;
}
bool structure_chunk::has_chi1inv(component c, direction d) const {
return is_mine() && chi1inv[c][d] && !trivial_chi1inv[c][d];
}
void structure::mix_with(const structure *oth, double f) {
if (num_chunks != oth->num_chunks)
abort("You can't phase materials with different chunk topologies...\n");
changing_chunks();
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine()) chunks[i]->mix_with(oth->chunks[i], f);
}
structure_chunk::~structure_chunk() {
FOR_COMPONENTS(c) {
FOR_DIRECTIONS(d) {
delete[] chi1inv[c][d];
delete[] conductivity[c][d];
delete[] condinv[c][d];
}
delete[] chi2[c];
delete[] chi3[c];
}
FOR_DIRECTIONS(d) {
delete[] sig[d];
delete[] kap[d];
delete[] siginv[d];
}
FOR_FIELD_TYPES(ft) { delete chiP[ft]; }
}
void structure_chunk::mix_with(const structure_chunk *n, double f) {
FOR_COMPONENTS(c) FOR_DIRECTIONS(d) {
if (!chi1inv[c][d] && n->chi1inv[c][d]) {
chi1inv[c][d] = new realnum[gv.ntot()];
trivial_chi1inv[c][d] = n->trivial_chi1inv[c][d];
if (component_direction(c) == d) // diagonal components = 1 by default
for (size_t i = 0; i < gv.ntot(); i++)
chi1inv[c][d][i] = 1.0;
else
for (size_t i = 0; i < gv.ntot(); i++)
chi1inv[c][d][i] = 0.0;
}
if (!conductivity[c][d] && n->conductivity[c][d]) {
conductivity[c][d] = new realnum[gv.ntot()];
for (size_t i = 0; i < gv.ntot(); i++)
conductivity[c][d][i] = 0.0;
}
if (chi1inv[c][d]) {
trivial_chi1inv[c][d] = trivial_chi1inv[c][d] && n->trivial_chi1inv[c][d];
if (n->chi1inv[c][d])
for (size_t i = 0; i < gv.ntot(); i++)
chi1inv[c][d][i] += f * (n->chi1inv[c][d][i] - chi1inv[c][d][i]);
else {
double nval = component_direction(c) == d ? 1.0 : 0.0; // default
for (size_t i = 0; i < gv.ntot(); i++)
chi1inv[c][d][i] += f * (nval - chi1inv[c][d][i]);
}
}
if (conductivity[c][d]) {
if (n->conductivity[c][d])
for (size_t i = 0; i < gv.ntot(); i++)
conductivity[c][d][i] += f * (n->conductivity[c][d][i] - conductivity[c][d][i]);
else
for (size_t i = 0; i < gv.ntot(); i++)
conductivity[c][d][i] += f * (0.0 - conductivity[c][d][i]);
}
condinv_stale = true;
}
// Mix in the susceptibility....FIXME.
}
static inline double pml_x(int i, double dx, double bloc, double a) {
double here = i * 0.5 / a;
return (0.5 / a * ((int)(dx * (2 * a) + 0.5) - (int)(fabs(bloc - here) * (2 * a) + 0.5)));
}
void structure_chunk::use_pml(direction d, double dx, double bloc, double Rasymptotic,
double mean_stretch, pml_profile_func pml_profile,
void *pml_profile_data, double pml_profile_integral,
double pml_profile_integral_u) {
if (dx <= 0.0) return;
const double prefac = (-log(Rasymptotic)) / (4 * dx * pml_profile_integral);
/* The sigma term scales as 1/dx, since Rasymptotic is fixed. To
give the same thickness scaling of the transition reflections,
the kappa (stretch) term must be *smoother* by one derivative
than the sigma term. [See Oskooi et al, Opt. Express 16,
p. 11376 (2008)]. We accomplish this by making the kappa term
scale as pml_profile(x/dx) * (x/dx). (The pml_profile_integral_u
parameter is the integral of this function.) */
const double kappa_prefac = (mean_stretch - 1) / pml_profile_integral_u;
// Don't bother with PML if we don't even overlap with the PML region
// ...note that we should calculate overlap in exactly the same
// way that "x > 0" is computed below.
bool found_pml = false;
for (int i = gv.little_corner().in_direction(d); i <= gv.big_corner().in_direction(d) + 1; ++i)
if (pml_x(i, dx, bloc, a) > 0) {
found_pml = true;
break;
}
if (!found_pml) return;
if (is_mine()) {
if (sig[d]) {
delete[] sig[d];
delete[] kap[d];
delete[] siginv[d];
sig[d] = kap[d] = NULL;
siginv[d] = NULL;
}
LOOP_OVER_FIELD_DIRECTIONS(gv.dim, dd) {
if (!sig[dd]) {
int spml = (dd == d) ? (2 * gv.num_direction(d) + 2) : 1;
sigsize[dd] = spml;
sig[dd] = new double[spml];
kap[dd] = new double[spml];
siginv[dd] = new double[spml];
for (int i = 0; i < spml; ++i) {
sig[dd][i] = 0.0;
kap[dd][i] = 1.0;
siginv[dd][i] = 1.0;
}
}
}
for (int i = gv.little_corner().in_direction(d); i <= gv.big_corner().in_direction(d) + 1;
++i) {
int idx = i - gv.little_corner().in_direction(d);
double x = pml_x(i, dx, bloc, a);
if (x > 0) {
double s = pml_profile(x / dx, pml_profile_data);
sig[d][idx] = 0.5 * dt * prefac * s;
kap[d][idx] = 1 + kappa_prefac * s * (x / dx);
siginv[d][idx] = 1 / (kap[d][idx] + sig[d][idx]);
}
}
}
condinv_stale = true;
}
void structure_chunk::update_condinv() {
if (!condinv_stale || !is_mine()) return;
FOR_COMPONENTS(c) {
direction d = component_direction(c);
if (conductivity[c][d]) {
if (!condinv[c][d]) condinv[c][d] = new realnum[gv.ntot()];
LOOP_OVER_VOL(gv, c, i) { condinv[c][d][i] = 1 / (1 + conductivity[c][d][i] * dt * 0.5); }
}
else if (condinv[c][d]) { // condinv not needed
delete[] condinv[c][d];
condinv[c][d] = NULL;
}
}
condinv_stale = false;
}
structure_chunk::structure_chunk(const structure_chunk *o) : v(o->v) {
refcount = 1;
FOR_FIELD_TYPES(ft) {
{
susceptibility *cur = NULL;
chiP[ft] = NULL;
for (const susceptibility *ocur = o->chiP[ft]; ocur; ocur = ocur->next) {
if (cur) {
cur->next = ocur->clone();
cur = cur->next;
}
else {
chiP[ft] = cur = ocur->clone();
}
cur->next = NULL;
}
}
}
a = o->a;
Courant = o->Courant;
dt = o->dt;
gv = o->gv;
the_proc = o->the_proc;
the_is_mine = my_rank() == n_proc();
cost = o->cost;
FOR_COMPONENTS(c) {
if (is_mine() && o->chi3[c]) {
chi3[c] = new realnum[gv.ntot()];
if (chi3[c] == NULL) abort("Out of memory!\n");
for (size_t i = 0; i < gv.ntot(); i++)
chi3[c][i] = o->chi3[c][i];
}
else {
chi3[c] = NULL;
}
if (is_mine() && o->chi2[c]) {
chi2[c] = new realnum[gv.ntot()];
if (chi2[c] == NULL) abort("Out of memory!\n");
for (size_t i = 0; i < gv.ntot(); i++)
chi2[c][i] = o->chi2[c][i];
}
else {
chi2[c] = NULL;
}
}
FOR_COMPONENTS(c) FOR_DIRECTIONS(d) { trivial_chi1inv[c][d] = true; }
FOR_COMPONENTS(c) FOR_DIRECTIONS(d) {
if (is_mine()) {
trivial_chi1inv[c][d] = o->trivial_chi1inv[c][d];
if (o->chi1inv[c][d]) {
chi1inv[c][d] = new realnum[gv.ntot()];
memcpy(chi1inv[c][d], o->chi1inv[c][d], gv.ntot() * sizeof(realnum));
}
else
chi1inv[c][d] = NULL;
if (o->conductivity[c][d]) {
conductivity[c][d] = new realnum[gv.ntot()];
memcpy(conductivity[c][d], o->conductivity[c][d], gv.ntot() * sizeof(realnum));
condinv[c][d] = new realnum[gv.ntot()];
memcpy(condinv[c][d], o->condinv[c][d], gv.ntot() * sizeof(realnum));
}
else
conductivity[c][d] = condinv[c][d] = NULL;
}
}
condinv_stale = o->condinv_stale;
// Allocate the PML conductivity arrays:
for (int d = 0; d < 6; ++d) {
sig[d] = NULL;
kap[d] = NULL;
siginv[d] = NULL;
sigsize[d] = 0;
}
for (int i = 0; i < 5; ++i)
sigsize[i] = 0;
// Copy over the PML conductivity arrays:
if (is_mine()) FOR_DIRECTIONS(d) {
if (o->sig[d]) {
sig[d] = new double[2 * gv.num_direction(d) + 1];
kap[d] = new double[2 * gv.num_direction(d) + 1];
siginv[d] = new double[2 * gv.num_direction(d) + 1];
sigsize[d] = o->sigsize[d];
for (int i = 0; i < 2 * gv.num_direction(d) + 1; i++) {
sig[d][i] = o->sig[d][i];
kap[d][i] = o->kap[d][i];
siginv[d][i] = o->siginv[d][i];
}
}
}
}
void structure_chunk::set_chi3(component c, material_function &epsilon) {
if (!is_mine() || !gv.has_field(c)) return;
if (!is_electric(c) && !is_magnetic(c)) abort("only E or H can have chi3");
epsilon.set_volume(gv.pad().surroundings());
if (!chi1inv[c][component_direction(c)]) { // require chi1 if we have chi3
chi1inv[c][component_direction(c)] = new realnum[gv.ntot()];
for (size_t i = 0; i < gv.ntot(); ++i)
chi1inv[c][component_direction(c)][i] = 1.0;
}
if (!chi3[c]) chi3[c] = new realnum[gv.ntot()];
bool trivial = true;
LOOP_OVER_VOL(gv, c, i) {
IVEC_LOOP_LOC(gv, here);
chi3[c][i] = epsilon.chi3(c, here);
trivial = trivial && (chi3[c][i] == 0.0);
}
/* currently, our update_e_from_d routine requires that
chi2 be present if chi3 is, and vice versa */
if (!chi2[c]) {
if (!trivial) {
chi2[c] = new realnum[gv.ntot()];
memset(chi2[c], 0, gv.ntot() * sizeof(realnum)); // chi2 = 0
}
else { // no chi3, and chi2 is trivial (== 0), so delete
delete[] chi3[c];
chi3[c] = NULL;
}
}
epsilon.unset_volume();
}
void structure_chunk::set_chi2(component c, material_function &epsilon) {
if (!is_mine() || !gv.has_field(c)) return;
if (!is_electric(c) && !is_magnetic(c)) abort("only E or H can have chi2");
epsilon.set_volume(gv.pad().surroundings());
if (!chi1inv[c][component_direction(c)]) { // require chi1 if we have chi2
chi1inv[c][component_direction(c)] = new realnum[gv.ntot()];
for (size_t i = 0; i < gv.ntot(); ++i)
chi1inv[c][component_direction(c)][i] = 1.0;
}
if (!chi2[c]) chi2[c] = new realnum[gv.ntot()];
bool trivial = true;
LOOP_OVER_VOL(gv, c, i) {
IVEC_LOOP_LOC(gv, here);
chi2[c][i] = epsilon.chi2(c, here);
trivial = trivial && (chi2[c][i] == 0.0);
}
/* currently, our update_e_from_d routine requires that
chi3 be present if chi2 is, and vice versa */
if (!chi3[c]) {
if (!trivial) {
chi3[c] = new realnum[gv.ntot()];
memset(chi3[c], 0, gv.ntot() * sizeof(realnum)); // chi3 = 0
}
else { // no chi2, and chi3 is trivial (== 0), so delete
delete[] chi2[c];
chi2[c] = NULL;
}
}
epsilon.unset_volume();
}
void structure_chunk::set_conductivity(component c, material_function &C) {
if (!is_mine() || !gv.has_field(c)) return;
C.set_volume(gv.pad().surroundings());
if (!is_electric(c) && !is_magnetic(c) && !is_D(c) && !is_B(c))
abort("invalid component for conductivity");
direction c_d = component_direction(c);
component c_C = is_electric(c) ? direction_component(Dx, c_d)
: (is_magnetic(c) ? direction_component(Bx, c_d) : c);
realnum *multby = is_electric(c) || is_magnetic(c) ? chi1inv[c][c_d] : 0;
if (!conductivity[c_C][c_d]) conductivity[c_C][c_d] = new realnum[gv.ntot()];
if (!conductivity[c_C][c_d]) abort("Memory allocation error.\n");
bool trivial = true;
realnum *cnd = conductivity[c_C][c_d];
if (multby) {
LOOP_OVER_VOL(gv, c_C, i) {
IVEC_LOOP_LOC(gv, here);
cnd[i] = C.conductivity(c, here) * multby[i];
trivial = trivial && (cnd[i] == 0.0);
}
}
else {
LOOP_OVER_VOL(gv, c_C, i) {
IVEC_LOOP_LOC(gv, here);
cnd[i] = C.conductivity(c, here);
trivial = trivial && (cnd[i] == 0.0);
}
}
if (trivial) { // skip conductivity computations if conductivity == 0
delete[] conductivity[c_C][c_d];
conductivity[c_C][c_d] = NULL;
}
condinv_stale = true;
C.unset_volume();
}
structure_chunk::structure_chunk(const grid_volume &thegv, const volume &vol_limit, double Courant,
int pr)
: Courant(Courant), v(thegv.surroundings() & vol_limit), cost(0.0) {
refcount = 1;
pml_fmin = 0.2;
FOR_FIELD_TYPES(ft) { chiP[ft] = NULL; }
gv = thegv;
a = thegv.a;
dt = Courant / a;
the_proc = pr;
the_is_mine = n_proc() == my_rank();
// initialize materials arrays to NULL
FOR_COMPONENTS(c) { chi3[c] = NULL; }
FOR_COMPONENTS(c) { chi2[c] = NULL; }
FOR_COMPONENTS(c) FOR_DIRECTIONS(d) {
trivial_chi1inv[c][d] = true;
chi1inv[c][d] = NULL;
conductivity[c][d] = NULL;