-
Notifications
You must be signed in to change notification settings - Fork 644
/
Copy pathvisualization.py
1069 lines (903 loc) · 41.4 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from collections import namedtuple
import warnings
import numpy as np
import meep as mp
from meep.geom import Vector3, init_do_averaging
from meep.source import EigenModeSource, check_positive
# ------------------------------------------------------- #
# Visualization
# ------------------------------------------------------- #
# Contains all necesarry visualation routines for use with
# pymeep and pympb.
# ------------------------------------------------------- #
# Functions used to define the default plotting parameters
# for the different plotting routines.
default_source_parameters = {
'color':'r',
'edgecolor':'r',
'facecolor':'none',
'hatch':'/',
'linewidth':2
}
default_monitor_parameters = {
'color':'b',
'edgecolor':'b',
'facecolor':'none',
'hatch':'/',
'linewidth':2
}
default_field_parameters = {
'interpolation':'spline36',
'cmap':'RdBu',
'alpha':0.6,
'post_process':np.real
}
default_eps_parameters = {
'interpolation':'spline36',
'cmap':'binary',
'alpha':1.0,
'contour':False,
'contour_linewidth':1,
'frequency':None,
'resolution':None
}
default_boundary_parameters = {
'color':'g',
'edgecolor':'g',
'facecolor':'none',
'hatch':'/'
}
default_volume_parameters = {
'alpha':1.0,
'color':'k',
'linestyle':'-',
'linewidth':1,
'marker':'.',
'edgecolor':'k',
'facecolor':'none',
'hatch':'/'
}
default_label_parameters = {
'label_color':'r',
'offset':20,
'label_alpha':0.3
}
# Used to remove the elements of a dictionary (dict_to_filter) that
# don't correspond to the keyword arguments of a particular
# function (func_with_kwargs.)
# Adapted from https://stackoverflow.com/questions/26515595/how-does-one-ignore-unexpected-keyword-arguments-passed-to-a-function/44052550
def filter_dict(dict_to_filter, func_with_kwargs):
import inspect
filter_keys = []
try:
# Python3 ...
sig = inspect.signature(func_with_kwargs)
filter_keys = [param.name for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD]
except:
# Python2 ...
filter_keys = inspect.getargspec(func_with_kwargs)[0]
filtered_dict = {filter_key:dict_to_filter[filter_key] for filter_key in filter_keys if filter_key in dict_to_filter}
return filtered_dict
# ------------------------------------------------------- #
# Routines to add legends to plot
def place_label(ax, label_text, x, y, centerx, centery, label_parameters=None):
label_parameters = default_label_parameters if label_parameters is None else dict(default_label_parameters, **label_parameters)
offset = label_parameters['offset']
alpha = label_parameters['label_alpha']
color = label_parameters['label_color']
if x > centerx:
xtext = -offset
else:
xtext = offset
if y > centery:
ytext = -offset
else:
ytext = offset
ax.annotate(label_text, xy=(x, y), xytext=(xtext, ytext),
textcoords='offset points', ha='center', va='bottom',
bbox=dict(boxstyle='round,pad=0.2', fc=color, alpha=alpha),
arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',
color=color))
return ax
# ------------------------------------------------------- #
# Helper functions used to plot volumes on a 2D plane
# Returns the intersection points of two Volumes.
# Volumes must be a line, plane, or rectangular prism
# (since they are volume objects)
def intersect_volume_volume(volume1, volume2):
# volume1 ............... [volume]
# volume2 ............... [volume]
# Represent the volumes by an "upper" and "lower" coordinate
U1 = [volume1.center.x+volume1.size.x/2,
volume1.center.y+volume1.size.y/2,
volume1.center.z+volume1.size.z/2]
L1 = [volume1.center.x-volume1.size.x/2,
volume1.center.y-volume1.size.y/2,
volume1.center.z-volume1.size.z/2]
U2 = [volume2.center.x+volume2.size.x/2,
volume2.center.y+volume2.size.y/2,
volume2.center.z+volume2.size.z/2]
L2 = [volume2.center.x-volume2.size.x/2,
volume2.center.y-volume2.size.y/2,
volume2.center.z-volume2.size.z/2]
# Evaluate intersection
U = np.min([U1,U2],axis=0)
L = np.max([L1,L2],axis=0)
# For single points we have to check manually
if np.all(U-L == 0):
if (not volume1.pt_in_volume(Vector3(*U))) or (not volume2.pt_in_volume(Vector3(*U))):
return []
# Check for two volumes that don't intersect
if np.any(U-L < 0):
return []
# Pull all possible vertices
vertices = []
for x_vals in [L[0],U[0]]:
for y_vals in [L[1],U[1]]:
for z_vals in [L[2],U[2]]:
vertices.append(Vector3(x_vals,y_vals,z_vals))
# Remove any duplicate points caused by coplanar lines
vertices = [vertices[i] for i, x in enumerate(vertices) if x not in vertices[i+1:]]
return vertices
# All of the 2D plotting routines need an output plane over which to plot.
# The user has many options to specify this output plane. They can pass
# the output_plane parameter, which is a 2D volume object. They can specify
# a volume using in_volume, which stores the volume as a C volume, not a Python
# volume. They can also do nothing and plot the XY plane through Z=0.
#
# Not only do we need to check for all of these possibilities, but we also need
# to check if the user accidentally specifies a plane that stretches beyond the
# simulation domain.
def get_2D_dimensions(sim, output_plane):
from meep.simulation import Volume
# Pull correct plane from user
if output_plane:
plane_center, plane_size = (output_plane.center, output_plane.size)
elif sim.output_volume:
plane_center, plane_size = mp.get_center_and_size(sim.output_volume)
else:
plane_center, plane_size = (sim.geometry_center, sim.cell_size)
plane_volume = Volume(center=plane_center,size=plane_size)
if plane_size.x != 0 and plane_size.y != 0 and plane_size.z != 0:
raise ValueError("Plane volume must be 2D (a plane).")
check_volume = Volume(center=sim.geometry_center, size=sim.cell_size)
vertices = intersect_volume_volume(check_volume, plane_volume)
if len(vertices) == 0:
raise ValueError("The specified user volume is completely outside of the simulation domain.")
intersection_vol = Volume(vertices=vertices)
if (intersection_vol.size != plane_volume.size) or (intersection_vol.center != plane_volume.center):
warnings.warn('The specified user volume is larger than the simulation domain and has been truncated.')
sim_center, sim_size = (intersection_vol.center, intersection_vol.size)
return sim_center, sim_size
# ------------------------------------------------------- #
# actual plotting routines
def plot_volume(sim, ax, volume, output_plane=None, plotting_parameters=None, label=None):
import matplotlib.patches as patches
from matplotlib import pyplot as plt
from meep.simulation import Volume
# Set up the plotting parameters
plotting_parameters = default_volume_parameters if plotting_parameters is None else dict(default_volume_parameters, **plotting_parameters)
# Get domain measurements
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
plane = Volume(center=sim_center, size=sim_size)
# Pull volume parameters
size = volume.size
center = volume.center
xmax = center.x + size.x/2
xmin = center.x - size.x/2
ymax = center.y + size.y/2
ymin = center.y - size.y/2
zmax = center.z + size.z/2
zmin = center.z - size.z/2
# Add labels if requested
if label is not None and mp.am_master():
if sim_size.x == 0:
ax = place_label(ax,
label,
center.y,
center.z,
sim_center.y,
sim_center.z,
label_parameters=plotting_parameters)
elif sim_size.y == 0:
ax = place_label(ax,
label,
center.x,
center.z,
sim_center.x,
sim_center.z,
label_parameters=plotting_parameters)
elif sim_size.z == 0:
ax = place_label(ax,
label,
center.x,
center.y,
sim_center.x,
sim_center.y,
label_parameters=plotting_parameters)
# Intersect plane with volume
intersection = intersect_volume_volume(volume, plane)
# Sort the points in a counter clockwise manner to ensure convex polygon is formed
def sort_points(xy):
xy = np.squeeze(xy)
xy_mean = np.mean(xy, axis=0)
theta = np.arctan2(xy[:,1] - xy_mean[1], xy[:,0] - xy_mean[0])
return xy[np.argsort(theta, axis=0), :]
if mp.am_master():
# Point volume
if len(intersection) == 1:
point_args = {key:value for key, value in plotting_parameters.items() if key in ['color','marker','alpha','linewidth']}
if sim_size.y==0:
ax.scatter(center.x,center.z, **point_args)
return ax
elif sim_size.x==0:
ax.scatter(center.y,center.z, **point_args)
return ax
elif sim_size.z==0:
ax.scatter(center.x,center.y, **point_args)
return ax
else:
return ax
# Line volume
elif len(intersection) == 2:
line_args = {key:value for key, value in plotting_parameters.items() if key in ['color','linestyle','linewidth','alpha']}
# Plot YZ
if sim_size.x == 0:
ax.plot([a.y for a in intersection], [a.z for a in intersection], **line_args)
return ax
# Plot XZ
elif sim_size.y == 0:
ax.plot([a.x for a in intersection], [a.z for a in intersection], **line_args)
return ax
# Plot XY
elif sim_size.z == 0:
ax.plot([a.x for a in intersection], [a.y for a in intersection], **line_args)
return ax
else:
return ax
# Planar volume
elif len(intersection) > 2:
planar_args = {key:value for key, value in plotting_parameters.items() if key in ['edgecolor','linewidth','facecolor','hatch','alpha']}
# Plot YZ
if sim_size.x == 0:
ax.add_patch(patches.Polygon(sort_points([[a.y,a.z] for a in intersection]), **planar_args))
return ax
# Plot XZ
elif sim_size.y==0:
ax.add_patch(patches.Polygon(sort_points([[a.x,a.z] for a in intersection]), **planar_args))
return ax
# Plot XY
elif sim_size.z == 0:
ax.add_patch(patches.Polygon(sort_points([[a.x,a.y] for a in intersection]), **planar_args))
return ax
else:
return ax
else:
return ax
return ax
def plot_eps(sim, ax, output_plane=None, eps_parameters=None, frequency=None):
# consolidate plotting parameters
eps_parameters = default_eps_parameters if eps_parameters is None else dict(default_eps_parameters, **eps_parameters)
# Determine a frequency to plot all epsilon
if frequency is not None:
warnings.warn('The frequency parameter of plot2D has been deprecated. Use the frequency key of the eps_parameters dictionary instead.')
eps_parameters['frequency'] = frequency
if eps_parameters['frequency'] is None:
try:
# Continuous sources
eps_parameters['frequency'] = sim.sources[0].frequency
except:
try:
# Gaussian sources
eps_parameters['frequency'] = sim.sources[0].src.frequency
except:
try:
# Custom sources
eps_parameters['frequency'] = sim.sources[0].src.center_frequency
except:
# No sources
eps_parameters['frequency'] = 0
# Get domain measurements
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
xmin = sim_center.x - sim_size.x/2
xmax = sim_center.x + sim_size.x/2
ymin = sim_center.y - sim_size.y/2
ymax = sim_center.y + sim_size.y/2
zmin = sim_center.z - sim_size.z/2
zmax = sim_center.z + sim_size.z/2
center = Vector3(sim_center.x, sim_center.y, sim_center.z)
cell_size = Vector3(sim_size.x, sim_size.y, sim_size.z)
grid_resolution = eps_parameters['resolution'] if eps_parameters['resolution'] else sim.resolution
Nx = int((xmax - xmin) * grid_resolution + 1)
Ny = int((ymax - ymin) * grid_resolution + 1)
Nz = int((zmax - zmin) * grid_resolution + 1)
if sim_size.x == 0:
# Plot y on x axis, z on y axis (YZ plane)
extent = [ymin, ymax, zmin, zmax]
xlabel = 'Y'
ylabel = 'Z'
xtics = np.array([sim_center.x])
ytics = np.linspace(ymin, ymax, Ny)
ztics = np.linspace(zmin, zmax, Nz)
elif sim_size.y == 0:
# Plot x on x axis, z on y axis (XZ plane)
extent = [xmin, xmax, zmin, zmax]
xlabel = 'X'
ylabel = 'Z'
xtics = np.linspace(xmin, xmax, Nx)
ytics = np.array([sim_center.y])
ztics = np.linspace(zmin, zmax, Nz)
elif sim_size.z == 0:
# Plot x on x axis, y on y axis (XY plane)
extent = [xmin, xmax, ymin, ymax]
xlabel = 'X'
ylabel = 'Y'
xtics = np.linspace(xmin, xmax, Nx)
ytics = np.linspace(ymin, ymax, Ny)
ztics = np.array([sim_center.z])
else:
raise ValueError("A 2D plane has not been specified...")
eps_data = np.rot90(np.real(sim.get_epsilon_grid(xtics, ytics, ztics, eps_parameters['frequency'])))
if mp.am_master():
if eps_parameters['contour']:
ax.contour(eps_data, 0, levels=np.unique(eps_data), colors='black', origin='upper', extent=extent, linewidths=eps_parameters['contour_linewidth'])
else:
ax.imshow(eps_data, extent=extent, **filter_dict(eps_parameters, ax.imshow))
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
def plot_boundaries(sim, ax, output_plane=None, boundary_parameters=None):
# consolidate plotting parameters
boundary_parameters = default_boundary_parameters if boundary_parameters is None else dict(default_boundary_parameters, **boundary_parameters)
def get_boundary_volumes(thickness, direction, side):
from meep.simulation import Volume
thickness = boundary.thickness
# Get domain measurements
sim_center, sim_size = (sim.geometry_center, sim.cell_size)
xmin = sim_center.x - sim_size.x/2
xmax = sim_center.x + sim_size.x/2
ymin = sim_center.y - sim_size.y/2
ymax = sim_center.y + sim_size.y/2
zmin = sim_center.z - sim_size.z/2
zmax = sim_center.z + sim_size.z/2
cell_x = sim.cell_size.x
cell_y = sim.cell_size.y
cell_z = sim.cell_size.z
if direction == mp.X and side == mp.Low:
return Volume(center=Vector3(xmin+thickness/2,sim.geometry_center.y,sim.geometry_center.z),
size=Vector3(thickness,cell_y,cell_z))
elif direction == mp.X and side == mp.High:
return Volume(center=Vector3(xmax-thickness/2,sim.geometry_center.y,sim.geometry_center.z),
size=Vector3(thickness,cell_y,cell_z))
elif direction == mp.Y and side == mp.Low:
return Volume(center=Vector3(sim.geometry_center.x,ymin+thickness/2,sim.geometry_center.z),
size=Vector3(cell_x,thickness,cell_z))
elif direction == mp.Y and side == mp.High:
return Volume(center=Vector3(sim.geometry_center.x,ymax-thickness/2,sim.geometry_center.z),
size=Vector3(cell_x,thickness,cell_z))
elif direction == mp.Z and side == mp.Low:
return Volume(center=Vector3(sim.geometry_center.x,sim.geometry_center.y,zmin+thickness/2),
size=Vector3(cell_x,cell_y,thickness))
elif direction == mp.Z and side == mp.High:
return Volume(center=Vector3(sim.geometry_center.x,sim.geometry_center.y,zmax-thickness/2),
size=Vector3(cell_x,cell_y,thickness))
else:
raise ValueError("Invalid boundary type")
import itertools
for boundary in sim.boundary_layers:
# All four sides are the same
if boundary.direction == mp.ALL and boundary.side == mp.ALL:
if sim.dimensions == 1:
dims = [mp.X]
elif sim.dimensions == 2:
dims = [mp.X, mp.Y]
elif sim.dimensions == 3:
dims = [mp.X, mp.Y, mp.Z]
else:
raise ValueError("Invalid simulation dimensions")
for permutation in itertools.product(dims, [mp.Low, mp.High]):
vol = get_boundary_volumes(boundary.thickness,*permutation)
ax = plot_volume(sim,ax,vol,output_plane,plotting_parameters=boundary_parameters)
# two sides are the same
elif boundary.side == mp.ALL:
for side in [mp.Low, mp.High]:
vol = get_boundary_volumes(boundary.thickness,boundary.direction,side)
ax = plot_volume(sim,ax,vol,output_plane,plotting_parameters=boundary_parameters)
# only one side
else:
vol = get_boundary_volumes(boundary.thickness,boundary.direction,boundary.side)
ax = plot_volume(sim,ax,vol,output_plane,plotting_parameters=boundary_parameters)
return ax
def plot_sources(sim, ax, output_plane=None, labels=False, source_parameters=None):
from meep.simulation import Volume
# consolidate plotting parameters
source_parameters = default_source_parameters if source_parameters is None else dict(default_source_parameters, **source_parameters)
label = 'source' if labels else None
for src in sim.sources:
vol = Volume(center=src.center,size=src.size)
ax = plot_volume(sim,ax,vol,output_plane,plotting_parameters=source_parameters,label=label)
return ax
def plot_monitors(sim, ax, output_plane=None, labels=False, monitor_parameters=None):
from meep.simulation import Volume
# consolidate plotting parameters
monitor_parameters = default_monitor_parameters if monitor_parameters is None else dict(default_monitor_parameters, **monitor_parameters)
label = 'monitor' if labels else None
for mon in sim.dft_objects:
for reg in mon.regions:
vol = Volume(center=reg.center,size=reg.size)
ax = plot_volume(sim,ax,vol,output_plane,plotting_parameters=monitor_parameters,label=label)
return ax
def plot_fields(sim, ax=None, fields=None, output_plane=None, field_parameters=None):
if not sim._is_initialized:
sim.init_sim()
if fields is None:
return ax
field_parameters = default_field_parameters if field_parameters is None else dict(default_field_parameters, **field_parameters)
# user specifies a field component
if fields in [mp.Ex, mp.Ey, mp.Ez, mp.Hx, mp.Hy, mp.Hz]:
# Get domain measurements
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
xmin = sim_center.x - sim_size.x/2
xmax = sim_center.x + sim_size.x/2
ymin = sim_center.y - sim_size.y/2
ymax = sim_center.y + sim_size.y/2
zmin = sim_center.z - sim_size.z/2
zmax = sim_center.z + sim_size.z/2
center = Vector3(sim_center.x, sim_center.y, sim_center.z)
cell_size = Vector3(sim_size.x, sim_size.y, sim_size.z)
if sim_size.x == 0:
# Plot y on x axis, z on y axis (YZ plane)
extent = [ymin, ymax, zmin, zmax]
xlabel = 'Y'
ylabel = 'Z'
elif sim_size.y == 0:
# Plot x on x axis, z on y axis (XZ plane)
extent = [xmin, xmax, zmin, zmax]
xlabel = 'X'
ylabel = 'Z'
elif sim_size.z == 0:
# Plot x on x axis, y on y axis (XY plane)
extent = [xmin, xmax, ymin, ymax]
xlabel = 'X'
ylabel = 'Y'
fields = sim.get_array(center=center, size=cell_size, component=fields)
else:
raise ValueError('Please specify a valid field component (mp.Ex, mp.Ey, ...')
fields = field_parameters['post_process'](fields)
# Either plot the field, or return the array
if ax:
if mp.am_master():
ax.imshow(np.rot90(fields), extent=extent, **filter_dict(field_parameters,ax.imshow))
return ax
else:
return np.rot90(fields)
return ax
def plot2D(sim, ax=None, output_plane=None, fields=None, labels=False,
eps_parameters=None, boundary_parameters=None,
source_parameters=None, monitor_parameters=None,
field_parameters=None, frequency=None,
plot_eps_flag=True, plot_sources_flag=True,
plot_monitors_flag=True, plot_boundaries_flag=True):
# Ensure a figure axis exists
if ax is None and mp.am_master():
from matplotlib import pyplot as plt
ax = plt.gca()
# validate the output plane to ensure proper 2D coordinates
from meep.simulation import Volume
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
output_plane = Volume(center=sim_center, size=sim_size)
# Plot geometry
if plot_eps_flag:
ax = plot_eps(sim, ax, output_plane=output_plane,
eps_parameters=eps_parameters, frequency=frequency)
# Plot boundaries
if plot_boundaries_flag:
ax = plot_boundaries(sim, ax, output_plane=output_plane,
boundary_parameters=boundary_parameters)
# Plot sources
if plot_sources_flag:
ax = plot_sources(sim, ax, output_plane=output_plane,
labels=labels, source_parameters=source_parameters)
# Plot monitors
if plot_monitors_flag:
ax = plot_monitors(sim, ax, output_plane=output_plane,
labels=labels, monitor_parameters=monitor_parameters)
# Plot fields
if fields:
ax = plot_fields(sim, ax, fields, output_plane=output_plane,
field_parameters=field_parameters)
return ax
def plot3D(sim):
from mayavi import mlab
if sim.dimensions < 3:
raise ValueError("Simulation must have 3 dimensions to visualize 3D")
xmin = sim.geometry_center.x - 0.5*sim.cell_size.x
xmax = sim.geometry_center.x + 0.5*sim.cell_size.x
ymin = sim.geometry_center.y - 0.5*sim.cell_size.y
ymax = sim.geometry_center.y + 0.5*sim.cell_size.y
zmin = sim.geometry_center.z - 0.5*sim.cell_size.z
zmax = sim.geometry_center.z + 0.5*sim.cell_size.z
Nx = int(sim.cell_size.x * sim.resolution) + 1
Ny = int(sim.cell_size.y * sim.resolution) + 1
Nz = int(sim.cell_size.z * sim.resolution) + 1
xtics = np.linspace(xmin, xmax, Nx)
ytics = np.linspace(ymin, ymax, Ny)
ztics = np.linspace(zmin, zmax, Nz)
eps_data = sim.get_epsilon_grid(xtics, ytics, ztics)
s = mlab.contour3d(eps_data, colormap="YlGnBu")
return s
def visualize_chunks(sim):
if sim.structure is None:
sim.init_sim()
import matplotlib.pyplot as plt
import matplotlib.cm
import matplotlib.colors
if sim.structure.gv.dim == 2:
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
else:
from matplotlib.collections import PolyCollection
vols = sim.structure.get_chunk_volumes()
owners = sim.structure.get_chunk_owners()
def plot_box(box, proc, fig, ax):
if sim.structure.gv.dim == 2:
low = mp.Vector3(box.low.x, box.low.y, box.low.z)
high = mp.Vector3(box.high.x, box.high.y, box.high.z)
points = [low, high]
x_len = mp.Vector3(high.x) - mp.Vector3(low.x)
y_len = mp.Vector3(y=high.y) - mp.Vector3(y=low.y)
xy_len = mp.Vector3(high.x, high.y) - mp.Vector3(low.x, low.y)
points += [low + x_len]
points += [low + y_len]
points += [low + xy_len]
points += [high - x_len]
points += [high - y_len]
points += [high - xy_len]
points = np.array([np.array(v) for v in points])
edges = [
[points[0], points[2], points[4], points[3]],
[points[1], points[5], points[7], points[6]],
[points[0], points[3], points[5], points[7]],
[points[1], points[4], points[2], points[6]],
[points[3], points[4], points[1], points[5]],
[points[0], points[7], points[6], points[2]]
]
faces = Poly3DCollection(edges, linewidths=1, edgecolors='k')
color_with_alpha = matplotlib.colors.to_rgba(chunk_colors[proc], alpha=0.2)
faces.set_facecolor(color_with_alpha)
ax.add_collection3d(faces)
# Plot the points themselves to force the scaling of the axes
ax.scatter(points[:, 0], points[:, 1], points[:, 2], s=0)
else:
low = mp.Vector3(box.low.x, box.low.y)
high = mp.Vector3(box.high.x, box.high.y)
points = [low, high]
x_len = mp.Vector3(high.x) - mp.Vector3(low.x)
y_len = mp.Vector3(y=high.y) - mp.Vector3(y=low.y)
points += [low + x_len]
points += [low + y_len]
points = np.array([np.array(v)[:-1] for v in points])
edges = [
[points[0], points[2], points[1], points[3]]
]
faces = PolyCollection(edges, linewidths=1, edgecolors='k')
color_with_alpha = matplotlib.colors.to_rgba(chunk_colors[proc])
faces.set_facecolor(color_with_alpha)
ax.add_collection(faces)
# Plot the points themselves to force the scaling of the axes
ax.scatter(points[:, 0], points[:, 1], s=0)
if mp.am_master():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d' if sim.structure.gv.dim == 2 else None)
chunk_colors = matplotlib.cm.rainbow(np.linspace(0, 1, mp.count_processors()))
for i, v in enumerate(vols):
plot_box(mp.gv2box(v.surroundings()), owners[i], fig, ax)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_aspect('equal')
cell_box = mp.gv2box(sim.structure.gv.surroundings())
if sim.structure.gv.dim == 2:
ax.set_xlim3d(left=cell_box.low.x,right=cell_box.high.x)
ax.set_ylim3d(bottom=cell_box.low.y,top=cell_box.high.y)
ax.set_zlim3d(bottom=cell_box.low.z,top=cell_box.high.z)
ax.set_zlabel('z')
else:
ax.set_xlim(left=cell_box.low.x,right=cell_box.high.x)
ax.set_ylim(bottom=cell_box.low.y,top=cell_box.high.y)
plt.tight_layout()
plt.show()
# ------------------------------------------------------- #
# Animate2D
# ------------------------------------------------------- #
# An extensive run function used to visualize the fields
# of a 2D simulation after every specified time step.
# ------------------------------------------------------- #
# Required arguments
# sim ................. [Simulation object]
# fields .............. [mp.Ex, mp.Ey, ..., mp. Hz]
# ------------------------------------------------------- #
# Optional arguments
# f ................... [matplotlib figure object]
# realtime ............ [bool] Update plot in each step
# normalize ........... [bool] saves fields to normalize
# after simulation ends.
# plot_modifiers ...... [list] additional functions to
# modify plot
# customization_args .. [dict] other customization args
# to pass to plot2D()
class Animate2D(object):
"""
A class used to record the fields during timestepping (i.e., a [`run`](#run-functions)
function). The object is initialized prior to timestepping by specifying the
simulation object and the field component. The object can then be passed to any
[step-function modifier](#step-function-modifiers). For example, one can record the
$E_z$ fields at every one time unit using:
```py
animate = mp.Animate2D(sim,
fields=mp.Ez,
realtime=True,
field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none'},
boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})
sim.run(mp.at_every(1,animate),until=25)
```
By default, the object saves each frame as a PNG image into memory (not disk). This is
typically more memory efficient than storing the actual fields. If the user sets the
`normalize` argument, then the object will save the actual field information as a
NumPy array to be normalized for post processing. The fields of a figure can also be
updated in realtime by setting the `realtime` flag. This does not work for
IPython/Jupyter notebooks, however.
Once the simulation is run, the animation can be output as an interactive JSHTML
object, an mp4, or a GIF.
Multiple `Animate2D` objects can be initialized and passed to the run function to
track different volume locations (using `mp.in_volume`) or field components.
"""
def __init__(self, sim, fields, f=None, realtime=False, normalize=False,
plot_modifiers=None, **customization_args):
"""
Construct an `Animate2D` object.
+ **`sim`** — Simulation object.
+ **`fields`** — Field component to record at each time instant.
+ **`f=None`** — Optional `matplotlib` figure object that the routine will update
on each call. If not supplied, then a new one will be created upon
initialization.
+ **`realtime=False`** — Whether or not to update a figure window in realtime as
the simulation progresses. Disabled by default. Not compatible with
IPython/Jupyter notebooks.
+ **`normalize=False`** — Records fields at each time step in memory in a NumPy
array and then normalizes the result by dividing by the maximum field value at a
single point in the cell over all the time snapshots.
+ **`plot_modifiers=None`** — A list of functions that can modify the figure's
`axis` object. Each function modifier accepts a single argument, an `axis`
object, and must return that same axis object. The following modifier changes
the `xlabel`:
```py
def mod1(ax):
ax.set_xlabel('Testing')
return ax
plot_modifiers = [mod1]
```
+ **`**customization_args`** — Customization keyword arguments passed to
`plot2D()` (i.e. `labels`, `eps_parameters`, `boundary_parameters`, etc.)
"""
self.fields = fields
if f:
self.f = f
self.ax = self.f.gca()
elif mp.am_master():
from matplotlib import pyplot as plt
self.f = plt.figure()
self.ax = self.f.gca()
else:
self.f = None
self.ax = None
self.realtime = realtime
self.normalize = normalize
self.plot_modifiers = plot_modifiers
self.customization_args = customization_args
self.cumulative_fields = []
self._saved_frames = []
self.frame_format = 'png' # format in which each frame is saved in memory
self.codec = 'h264' # encoding of mp4 video
self.default_mode = 'loop' # html5 video control mode
self.init = False
# Needed for step functions
self.__code__ = namedtuple('gna_hack',['co_argcount'])
self.__code__.co_argcount=2
def __call__(self,sim,todo):
from matplotlib import pyplot as plt
if todo == 'step':
# Initialize the plot
if not self.init:
filtered_plot2D = filter_dict(self.customization_args, plot2D)
ax = sim.plot2D(ax=self.ax, fields=self.fields, **filtered_plot2D)
# Run the plot modifier functions
if self.plot_modifiers:
for k in range(len(self.plot_modifiers)):
ax = self.plot_modifiers[k](self.ax)
# Store the fields
if mp.am_master():
fields = ax.images[-1].get_array()
self.ax = ax
self.w, self.h = self.f.get_size_inches()
self.init = True
else:
# Update the plot
filtered_plot_fields= filter_dict(self.customization_args, plot_fields)
fields = sim.plot_fields(fields=self.fields, **filtered_plot_fields)
if mp.am_master():
self.ax.images[-1].set_data(fields)
self.ax.images[-1].set_clim(vmin=0.8*np.min(fields), vmax=0.8*np.max(fields))
if self.realtime and mp.am_master():
# Redraw the current figure if requested
plt.pause(0.05)
if self.normalize and mp.am_master():
# Save fields as a numpy array to be normalized
# and saved later.
self.cumulative_fields.append(fields)
elif mp.am_master():
# Capture figure as a png, but store the png in memory
# to avoid writing to disk.
self.grab_frame()
return
elif todo == 'finish':
# Normalize the frames, if requested, and export
if self.normalize and mp.am_master():
if mp.verbosity.meep > 0:
print("Normalizing field data...")
fields = np.array(self.cumulative_fields) / np.max(np.abs(self.cumulative_fields), axis=(0,1,2))
for k in range(len(self.cumulative_fields)):
self.ax.images[-1].set_data(fields[k,:,:])
self.ax.images[-1].set_clim(vmin=-0.8, vmax=0.8)
self.grab_frame()
return
@property
def frame_size(self):
# A tuple ``(width, height)`` in pixels of a movie frame.
# modified from matplotlib library
w, h = self.f.get_size_inches()
return int(w * self.f.dpi), int(h * self.f.dpi)
def grab_frame(self):
# Saves the figures frame to memory.
# modified from matplotlib library
from io import BytesIO
bin_data = BytesIO()
self.f.savefig(bin_data, format=self.frame_format)
#imgdata64 = base64.encodebytes(bin_data.getvalue()).decode('ascii')
self._saved_frames.append(bin_data.getvalue())
def _embedded_frames(self, frame_list, frame_format):
# converts frame data stored in memory to html5 friendly format
# frame_list should be a list of base64-encoded png files
# modified from matplotlib
import base64
template = ' frames[{0}] = "data:image/{1};base64,{2}"\n'
return "\n" + "".join(
template.format(i, frame_format, base64.encodebytes(frame_data).decode('ascii').replace('\n', '\\\n'))
for i, frame_data in enumerate(frame_list))
def to_jshtml(self,fps):
"""
Outputs an interactable JSHTML animation object that is embeddable in Jupyter
notebooks. The object is packaged with controls to manipulate the video's
playback. User must specify a frame rate `fps` in frames per second.
"""
# Exports a javascript enabled html object that is
# ready for jupyter notebook embedding.
# modified from matplotlib/animation.py code.
# Only works with Python3 and matplotlib > 3.1.0
from distutils.version import LooseVersion
import matplotlib
if LooseVersion(matplotlib.__version__) < LooseVersion("3.1.0"):
print('-------------------------------')
print('Warning: JSHTML output is not supported with your current matplotlib build. Consider upgrading to 3.1.0+')
print('-------------------------------')
return
if mp.am_master():
from uuid import uuid4
from matplotlib._animation_data import (DISPLAY_TEMPLATE, INCLUDED_FRAMES, JS_INCLUDE, STYLE_INCLUDE)
# save the frames to an html file
fill_frames = self._embedded_frames(self._saved_frames, self.frame_format)
Nframes = len(self._saved_frames)
mode_dict = dict(once_checked='',
loop_checked='',
reflect_checked='')
mode_dict[self.default_mode + '_checked'] = 'checked'
interval = 1000 // fps
html_string = ""
html_string += JS_INCLUDE
html_string += STYLE_INCLUDE
html_string += DISPLAY_TEMPLATE.format(id=uuid4().hex,
Nframes=Nframes,
fill_frames=fill_frames,
interval=interval,
**mode_dict)
return JS_Animation(html_string)
def to_gif(self,fps,filename):
"""
Generates and outputs a GIF file of the animation with the filename, `filename`,
and the frame rate, `fps`. Note that GIFs are significantly larger than mp4 videos
since they don't use any compression. Artifacts are also common because the GIF
format only supports 256 colors from a _predefined_ color palette. Requires
`ffmpeg`.
"""
# Exports a gif of the recorded animation
# requires ffmpeg to be installed
# modified from the matplotlib library
if mp.am_master():
from subprocess import Popen, PIPE
from io import TextIOWrapper, BytesIO
FFMPEG_BIN = 'ffmpeg'
command = [FFMPEG_BIN,
'-f', 'image2pipe', # force piping of rawvideo
'-vcodec', self.frame_format, # raw input codec
'-s', '%dx%d' % (self.frame_size),
'-r', str(fps), # frame rate in frames per second
'-i', 'pipe:', # The input comes from a pipe
'-vcodec', 'gif', # output gif format
'-r', str(fps), # frame rate in frames per second
'-y',
'-vf', 'pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2',
'-an', filename # output filename