-
Notifications
You must be signed in to change notification settings - Fork 641
/
Copy pathupdate_eh.cpp
232 lines (202 loc) · 8.67 KB
/
update_eh.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* Copyright (C) 2005-2021 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <string.h>
#include <assert.h>
#include "meep.hpp"
#include "meep_internals.hpp"
using namespace std;
namespace meep {
void fields::update_eh(field_type ft, bool skip_w_components) {
if (ft != E_stuff && ft != H_stuff) meep::abort("update_eh only works with E/H");
// split the chunks' volume into subdomains for tiled execution of update_eh loop
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine() && changed_materials) {
bool is_aniso = false;
FOR_FT_COMPONENTS(ft, cc) {
const direction d_c = component_direction(cc);
const direction d_1 = cycle_direction(chunks[i]->gv.dim, d_c, 1);
const direction d_2 = cycle_direction(chunks[i]->gv.dim, d_c, 2);
if (chunks[i]->s->chi1inv[cc][d_1] && chunks[i]->s->chi1inv[cc][d_2]) {
is_aniso = true;
break;
}
}
if (!chunks[i]->gvs_eh[ft].empty()) chunks[i]->gvs_eh[ft].clear();
if (loop_tile_base_eh > 0 && is_aniso) {
split_into_tiles(chunks[i]->gv, &chunks[i]->gvs_eh[ft], loop_tile_base_eh);
check_tiles(chunks[i]->gv, chunks[i]->gvs_eh[ft]);
} else {
chunks[i]->gvs_eh[ft].push_back(chunks[i]->gv);
}
}
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine())
if (chunks[i]->update_eh(ft, skip_w_components)) {
chunk_connections_valid = false; // E/H allocated - reconnect chunks
assert(changed_materials);
}
}
bool fields_chunk::needs_W_prev(component c) const {
for (susceptibility *chiP = s->chiP[type(c)]; chiP; chiP = chiP->next)
if (chiP->needs_W_prev()) return true;
return false;
}
bool fields_chunk::update_eh(field_type ft, bool skip_w_components) {
field_type ft2 = ft == E_stuff ? D_stuff : B_stuff; // for sources etc.
bool allocated_eh = false;
bool have_int_sources = false;
if (!doing_solve_cw) {
for (const src_vol &sv : sources[ft2]) {
if (sv.t()->is_integrated) {
have_int_sources = true;
break;
}
}
}
FOR_FT_COMPONENTS(ft, ec) {
component dc = field_type_component(ft2, ec);
DOCMP {
bool need_fmp = false;
if (f[ec][cmp]) {
need_fmp = have_int_sources;
for (polarization_state *p = pol[ft]; p && !need_fmp; p = p->next)
need_fmp = need_fmp || p->s->needs_P(ec, cmp, f);
}
if (need_fmp) {
if (!f_minus_p[dc][cmp]) f_minus_p[dc][cmp] = new realnum[gv.ntot()];
}
else if (f_minus_p[dc][cmp]) { // remove unneeded f_minus_p
delete[] f_minus_p[dc][cmp];
f_minus_p[dc][cmp] = 0;
}
}
}
bool have_f_minus_p = false;
FOR_FT_COMPONENTS(ft2, dc) {
if (f_minus_p[dc][0]) {
have_f_minus_p = true;
break;
}
}
const size_t ntot = s->gv.ntot();
if (have_f_minus_p && doing_solve_cw)
meep::abort("dispersive materials are not yet implemented for solve_cw");
//////////////////////////////////////////////////////////////////////////
// First, initialize f_minus_p to D - P, if necessary
FOR_FT_COMPONENTS(ft, ec) if (f[ec][0]) {
component dc = field_type_component(ft2, ec);
DOCMP if (f_minus_p[dc][cmp]) {
realnum *fmp = f_minus_p[dc][cmp];
memcpy(fmp, f[dc][cmp], sizeof(realnum) * ntot);
}
}
for (polarization_state *p = pol[ft]; p; p = p->next)
if (p->data) p->s->subtract_P(ft, f_minus_p, p->data);
//////////////////////////////////////////////////////////////////////////
// Next, subtract time-integrated sources (i.e. polarizations, not currents)
if (have_f_minus_p && !doing_solve_cw) {
for (const src_vol &sv : sources[ft2]) {
if (sv.t()->is_integrated && f[sv.c][0] && ft == type(sv.c)) {
component c = field_type_component(ft2, sv.c);
for (size_t j = 0; j < sv.num_points(); ++j) {
const complex<double> A = sv.dipole(j);
DOCMP { f_minus_p[c][cmp][sv.index_at(j)] -= (cmp) ? imag(A) : real(A); }
}
}
}
}
//////////////////////////////////////////////////////////////////////////
// Finally, compute E = chi1inv * D
realnum *dmp[NUM_FIELD_COMPONENTS][2];
FOR_FT_COMPONENTS(ft2, dc) DOCMP2 {
dmp[dc][cmp] = f_minus_p[dc][cmp] ? f_minus_p[dc][cmp] : f[dc][cmp];
}
for (size_t i = 0; i < gvs_eh[ft].size(); ++i) {
DOCMP FOR_FT_COMPONENTS(ft, ec) {
if (f[ec][cmp]) {
if (type(ec) != ft) meep::abort("bug in FOR_FT_COMPONENTS");
component dc = field_type_component(ft2, ec);
const direction d_ec = component_direction(ec);
const ptrdiff_t s_ec = gv.stride(d_ec) * (ft == H_stuff ? -1 : +1);
const direction d_1 = cycle_direction(gv.dim, d_ec, 1);
const component dc_1 = direction_component(dc, d_1);
const ptrdiff_t s_1 = gv.stride(d_1) * (ft == H_stuff ? -1 : +1);
const direction d_2 = cycle_direction(gv.dim, d_ec, 2);
const component dc_2 = direction_component(dc, d_2);
const ptrdiff_t s_2 = gv.stride(d_2) * (ft == H_stuff ? -1 : +1);
direction dsigw0 = d_ec;
direction dsigw = s->sigsize[dsigw0] > 1 ? dsigw0 : NO_DIRECTION;
// lazily allocate any E/H fields that are needed (H==B initially)
if (i == 0 && f[ec][cmp] == f[dc][cmp] &&
(s->chi1inv[ec][d_ec] || have_f_minus_p || dsigw != NO_DIRECTION)) {
f[ec][cmp] = new realnum[gv.ntot()];
memcpy(f[ec][cmp], f[dc][cmp], gv.ntot() * sizeof(realnum));
allocated_eh = true;
}
// lazily allocate W auxiliary field
if (i == 0 && !f_w[ec][cmp] && dsigw != NO_DIRECTION) {
f_w[ec][cmp] = new realnum[gv.ntot()];
memcpy(f_w[ec][cmp], f[ec][cmp], gv.ntot() * sizeof(realnum));
if (needs_W_notowned(ec)) allocated_eh = true; // communication needed
}
// for solve_cw, when W exists we get W and E from special variables
if (f_w[ec][cmp] && skip_w_components) continue;
// save W field from this timestep in f_w_prev if needed by pols
if (i == 0 && needs_W_prev(ec)) {
if (!f_w_prev[ec][cmp]) f_w_prev[ec][cmp] = new realnum[gv.ntot()];
memcpy(f_w_prev[ec][cmp], f_w[ec][cmp] ? f_w[ec][cmp] : f[ec][cmp],
sizeof(realnum) * gv.ntot());
}
if (f[ec][cmp] != f[dc][cmp])
STEP_UPDATE_EDHB(f[ec][cmp], ec, gv, gvs_eh[ft][i].little_owned_corner0(ec), gvs_eh[ft][i].big_corner(),
dmp[dc][cmp], dmp[dc_1][cmp], dmp[dc_2][cmp],
s->chi1inv[ec][d_ec], dmp[dc_1][cmp] ? s->chi1inv[ec][d_1] : NULL,
dmp[dc_2][cmp] ? s->chi1inv[ec][d_2] : NULL, s_ec, s_1, s_2, s->chi2[ec],
s->chi3[ec], f_w[ec][cmp], dsigw, s->sig[dsigw], s->kap[dsigw]);
}
}
}
/* Do annoying special cases for r=0 in cylindrical coords. Note
that this only really matters for field output; the Ez and Ep
components at r=0 don't usually affect the fields elsewhere
because of the form of Maxwell's equations in cylindrical coords. */
// (FIXME: handle Kerr case? Do we care about auxiliary PML fields here?)
if (gv.dim == Dcyl && gv.origin_r() == 0.0) DOCMP FOR_FT_COMPONENTS(ft, ec) {
if (f[ec][cmp] && (ec == Ep || ec == Ez || ec == Hr)) {
component dc = field_type_component(ft2, ec);
if (f[ec][cmp] == f[dc][cmp]) continue;
const int yee_idx = gv.yee_index(ec);
const int d_ec = component_direction(ec);
const int sR = gv.stride(R), nZ = gv.num_direction(Z);
realnum *E = f[ec][cmp];
const realnum *D = f_minus_p[dc][cmp] ? f_minus_p[dc][cmp] : f[dc][cmp];
const realnum *chi1inv = s->chi1inv[ec][d_ec];
if (chi1inv)
for (int iZ = 0; iZ < nZ; iZ++) {
const int i = yee_idx + iZ - sR;
E[i] = chi1inv[i] * D[i];
}
else
for (int iZ = 0; iZ < nZ; iZ++) {
const int i = yee_idx + iZ - sR;
E[i] = D[i];
}
}
}
return allocated_eh;
}
} // namespace meep