-
Notifications
You must be signed in to change notification settings - Fork 641
/
Copy pathboundaries.cpp
572 lines (533 loc) · 23 KB
/
boundaries.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/* Copyright (C) 2005-2020 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdlib.h>
#include <complex>
#include "meep.hpp"
#include "meep_internals.hpp"
#define UNUSED(x) (void)x // silence compiler warnings
using namespace std;
namespace meep {
void fields::set_boundary(boundary_side b, direction d, boundary_condition cond) {
if (boundaries[b][d] != cond) {
boundaries[b][d] = cond;
chunk_connections_valid = false;
}
}
void fields::use_bloch(direction d, complex<double> kk) {
k[d] = kk;
for (int b = 0; b < 2; b++)
set_boundary(boundary_side(b), d, Periodic);
if (real(kk) * gv.num_direction(d) == 0.5 * a) // check b.z. edge exactly
eikna[d] = -exp(-imag(kk) * ((2 * pi / a) * gv.num_direction(d)));
else {
const complex<double> I = complex<double>(0.0, 1.0);
eikna[d] = exp(I * kk * ((2 * pi / a) * gv.num_direction(d)));
}
coskna[d] = real(eikna[d]);
sinkna[d] = imag(eikna[d]);
if (is_real && kk != 0.0) // FIXME: allow real phases (c.f. CONNECT_PHASE)
abort("Can't use real fields with bloch boundary conditions!\n");
chunk_connections_valid = false; // FIXME: we don't always need to invalidate
}
void fields::use_bloch(const vec &k) {
// Note that I allow a 1D k input when in cylindrical, since in that case
// it is unambiguous.
if (k.dim != gv.dim && !(k.dim == D1 && gv.dim == Dcyl))
abort("Aaaack, k has wrong dimensions!\n");
LOOP_OVER_DIRECTIONS(gv.dim, d) {
if (gv.has_boundary(Low, d) && d != R) use_bloch(d, k.in_direction(d));
}
}
ivec fields::ilattice_vector(direction d) const {
switch (user_volume.dim) {
case D1: return ivec(2 * user_volume.nz());
case Dcyl: return iveccyl(0, 2 * user_volume.nz()); // Only Z direction here
case D2:
switch (d) {
case X: return ivec(user_volume.nx() * 2, 0);
case Y: return ivec(0, user_volume.ny() * 2);
case Z:
case R:
case P:
case NO_DIRECTION: break;
}
case D3:
switch (d) {
case X: return ivec(user_volume.nx() * 2, 0, 0);
case Y: return ivec(0, user_volume.ny() * 2, 0);
case Z: return ivec(0, 0, user_volume.nz() * 2);
case R:
case P:
case NO_DIRECTION: break;
}
}
abort("Aaack in ilattice_vector.\n");
return ivec(0);
}
vec fields::lattice_vector(direction d) const { return gv[ilattice_vector(d)]; }
void fields::disconnect_chunks() {
chunk_connections_valid = false;
for (int i = 0; i < num_chunks; i++) {
DOCMP {
FOR_FIELD_TYPES(f) {
for (int ip = 0; ip < 3; ++ip)
for (int io = 0; io < 2; io++) {
delete[] chunks[i]->connections[f][ip][io];
chunks[i]->connections[f][ip][io] = NULL;
}
}
}
FOR_FIELD_TYPES(f) {
delete[] chunks[i]->connection_phases[f];
chunks[i]->connection_phases[f] = NULL;
for (int ip = 0; ip < 3; ++ip)
for (int io = 0; io < 2; io++)
chunks[i]->num_connections[f][ip][io] = 0;
}
}
FOR_FIELD_TYPES(ft) {
for (int i = 0; i < num_chunks * num_chunks; i++) {
delete[] comm_blocks[ft][i];
comm_blocks[ft][i] = 0;
for (int ip = 0; ip < 3; ++ip)
comm_sizes[ft][ip][i] = 0;
}
}
}
void fields::connect_chunks() {
/* make sure all processes agree on chunk_connections_valid to avoid deadlocks */
am_now_working_on(MpiTime);
chunk_connections_valid = and_to_all(chunk_connections_valid);
finished_working();
if (!chunk_connections_valid) {
am_now_working_on(Connecting);
disconnect_chunks();
find_metals();
connect_the_chunks();
finished_working();
chunk_connections_valid = true;
}
}
inline bool fields::on_metal_boundary(const ivec &here) {
LOOP_OVER_DIRECTIONS(gv.dim, d) {
if (user_volume.has_boundary(High, d) &&
here.in_direction(d) == user_volume.big_corner().in_direction(d)) {
if (boundaries[High][d] == Metallic) return true;
}
if (boundaries[Low][d] == Magnetic &&
here.in_direction(d) == user_volume.little_corner().in_direction(d) + 1)
return true;
if (boundaries[Low][d] == Metallic &&
here.in_direction(d) == user_volume.little_corner().in_direction(d))
return true;
}
return false;
}
bool fields::locate_point_in_user_volume(ivec *there, complex<double> *phase) const {
// Check if a translational symmetry is needed to bring the point in...
if (!user_volume.owns(*there)) {
LOOP_OVER_DIRECTIONS(gv.dim, d) {
if (boundaries[High][d] == Periodic &&
there->in_direction(d) <= user_volume.little_corner().in_direction(d)) {
while (there->in_direction(d) <= user_volume.little_corner().in_direction(d)) {
*there += ilattice_vector(d);
*phase *= conj(eikna[d]);
}
}
else if (boundaries[High][d] == Periodic &&
there->in_direction(d) - ilattice_vector(d).in_direction(d) >
user_volume.little_corner().in_direction(d)) {
while (there->in_direction(d) - ilattice_vector(d).in_direction(d) >
user_volume.little_corner().in_direction(d)) {
*there -= ilattice_vector(d);
*phase *= eikna[d];
}
}
}
}
return user_volume.owns(*there);
}
void fields::locate_volume_source_in_user_volume(const vec p1, const vec p2, vec newp1[8],
vec newp2[8], complex<double> kphase[8],
int &ncopies) const {
// For periodic boundary conditions,
// this function locates up to 8 translated copies of the initial grid_volume specified by (p1,p2)
// First bring center of grid_volume inside
ncopies = 1;
newp1[0] = p1;
newp2[0] = p2;
kphase[0] = 1;
vec cen = (newp1[0] + newp2[0]) * 0.5;
LOOP_OVER_DIRECTIONS(gv.dim, d) {
if (boundaries[High][d] == Periodic) {
while (cen.in_direction(d) < gv.boundary_location(Low, d)) {
newp1[0] += lattice_vector(d);
newp2[0] += lattice_vector(d);
kphase[0] *= conj(eikna[d]);
cen = (newp1[0] + newp2[0]) * 0.5;
}
while (cen.in_direction(d) > gv.boundary_location(High, d)) {
newp1[0] -= lattice_vector(d);
newp2[0] -= lattice_vector(d);
kphase[0] *= eikna[d];
cen = (newp1[0] + newp2[0]) * 0.5;
}
}
}
// if grid_volume extends outside user_volume in any direction, we need to duplicate already
// existing copies
LOOP_OVER_DIRECTIONS(gv.dim, d) {
if (boundaries[High][d] == Periodic) {
if (newp1[0].in_direction(d) < gv.boundary_location(Low, d) ||
newp2[0].in_direction(d) < gv.boundary_location(Low, d)) {
for (int j = 0; j < ncopies; j++) {
newp1[ncopies + j] = newp1[j] + lattice_vector(d);
newp2[ncopies + j] = newp2[j] + lattice_vector(d);
kphase[ncopies + j] = kphase[j] * conj(eikna[d]);
}
ncopies *= 2;
}
else if (newp1[0].in_direction(d) > gv.boundary_location(High, d) ||
newp2[0].in_direction(d) > gv.boundary_location(High, d)) {
for (int j = 0; j < ncopies; j++) {
newp1[ncopies + j] = newp1[j] - lattice_vector(d);
newp2[ncopies + j] = newp2[j] - lattice_vector(d);
kphase[ncopies + j] = kphase[j] * eikna[d];
}
ncopies *= 2;
}
}
}
}
bool fields::locate_component_point(component *c, ivec *there, complex<double> *phase) const {
// returns true if this point and component exist in the user_volume. If
// that is the case, on return *c and *there store the component and
// location of where the point actually is, and *phase determines holds
// the phase needed to get the true field. If the point is not located,
// *c and *there will hold undefined values.
// Check if nothing tricky is needed...
*phase = 1.0;
if (!locate_point_in_user_volume(there, phase)) return false;
// Check if a rotation or inversion brings the point in...
if (user_volume.owns(*there))
for (int sn = 0; sn < S.multiplicity(); sn++) {
const ivec here = S.transform(*there, sn);
if (gv.owns(here)) {
*there = here;
*phase *= S.phase_shift(*c, sn);
*c = direction_component(*c, S.transform(component_direction(*c), sn).d);
return true;
}
}
return false;
}
void fields_chunk::zero_metal(field_type ft) {
for (size_t i = 0; i < num_zeroes[ft]; i++)
*(zeroes[ft][i]) = 0.0;
}
void fields::find_metals() {
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine()) {
const grid_volume vi = chunks[i]->gv;
FOR_FIELD_TYPES(ft) {
delete[] chunks[i]->zeroes[ft];
// First electric components...
chunks[i]->num_zeroes[ft] = 0;
DOCMP FOR_COMPONENTS(c) {
if (type(c) == ft && chunks[i]->f[c][cmp]) LOOP_OVER_VOL_OWNED(vi, c, n) {
if (IVEC_LOOP_AT_BOUNDARY) { // todo: just loop over boundaries
IVEC_LOOP_ILOC(vi, here);
if (on_metal_boundary(here)) chunks[i]->num_zeroes[ft]++;
}
}
}
typedef realnum *realnum_ptr;
chunks[i]->zeroes[ft] = new realnum_ptr[chunks[i]->num_zeroes[ft]];
size_t num = 0;
DOCMP FOR_COMPONENTS(c) {
if (type(c) == ft && chunks[i]->f[c][cmp]) LOOP_OVER_VOL_OWNED(vi, c, n) {
if (IVEC_LOOP_AT_BOUNDARY) { // todo: just loop over boundaries
IVEC_LOOP_ILOC(vi, here);
if (on_metal_boundary(here))
chunks[i]->zeroes[ft][num++] = chunks[i]->f[c][cmp] + n;
}
}
}
}
}
}
bool fields_chunk::needs_W_notowned(component c) {
for (susceptibility *chiP = s->chiP[type(c)]; chiP; chiP = chiP->next)
if (chiP->needs_W_notowned(c, f)) return true;
return false;
}
void fields::connect_the_chunks() {
size_t *nc[NUM_FIELD_TYPES][3][2];
FOR_FIELD_TYPES(f) {
for (int ip = 0; ip < 3; ip++)
for (int io = 0; io < 2; io++) {
nc[f][ip][io] = new size_t[num_chunks];
for (int i = 0; i < num_chunks; i++)
nc[f][ip][io][i] = 0;
}
}
/* For some of the chunks, H==B, and we definitely don't need to
send B between two such chunks. We'll still send B when
the recipient has H != B, since the recipient needs to get B
from somewhere (although it could get it locally, in principle).
When the sender has H != B, we'll skip sending B (we'll only send H)
since we need to get the correct curl H in the E update. This is
a bit subtle since the non-owned B may be different from H even
on an H==B chunk (true?), but since we don't use the non-owned B
for anything(?) it shouldn't matter. */
int *B_redundant = new int[num_chunks * 2 * 5];
for (int i = 0; i < num_chunks; ++i)
FOR_H_AND_B(hc, bc) {
B_redundant[5 * (num_chunks + i) + bc - Bx] = chunks[i]->f[hc][0] == chunks[i]->f[bc][0];
}
am_now_working_on(MpiTime);
and_to_all(B_redundant + 5 * num_chunks, B_redundant, 5 * num_chunks);
finished_working();
/* Figure out whether we need the notowned W field (== E/H in
non-PML regions) in update_pols, e.g. if we have an anisotropic
susceptibility. In this case, we have an additional
communication step where we communicate the notowned W. Then,
after updating the polarizations, we communicate the notowned E/H
... this does the E/H communication twice between non-PML regions
and hence is somewhat wasteful, but greatly simplifies the case
of communicating between a PML region (which has a separate W
array) and a non-PML region (no separate W). */
bool needs_W_notowned[NUM_FIELD_COMPONENTS];
FOR_COMPONENTS(c) { needs_W_notowned[c] = false; }
FOR_E_AND_H(c) {
for (int i = 0; i < num_chunks; i++)
needs_W_notowned[c] = needs_W_notowned[c] || chunks[i]->needs_W_notowned(c);
}
am_now_working_on(MpiTime);
FOR_E_AND_H(c) { needs_W_notowned[c] = or_to_all(needs_W_notowned[c]); }
finished_working();
for (int i = 0; i < num_chunks; i++) {
// First count the border elements...
const grid_volume vi = chunks[i]->gv;
FOR_FIELD_TYPES(ft) {
for (int ip = 0; ip < 3; ip++)
for (int j = 0; j < num_chunks; j++)
comm_sizes[ft][ip][j + i * num_chunks] = 0;
}
FOR_COMPONENTS(corig) {
if (have_component(corig)) LOOP_OVER_VOL_NOTOWNED(vi, corig, n) {
IVEC_LOOP_ILOC(vi, here);
component c = corig;
// We're looking at a border element...
complex<double> thephase;
if (locate_component_point(&c, &here, &thephase) && !on_metal_boundary(here))
for (int j = 0; j < num_chunks; j++) {
if ((chunks[i]->is_mine() || chunks[j]->is_mine()) && chunks[j]->gv.owns(here) &&
!(is_B(corig) && is_B(c) && B_redundant[5 * i + corig - Bx] &&
B_redundant[5 * j + c - Bx])) {
const int pair = j + i * num_chunks;
const connect_phase ip = thephase == 1.0
? CONNECT_COPY
: (thephase == -1.0 ? CONNECT_NEGATE : CONNECT_PHASE);
{
field_type f = type(c);
const int nn = is_real ? 1 : 2;
nc[f][ip][Incoming][i] += nn;
nc[f][ip][Outgoing][j] += nn;
comm_sizes[f][ip][pair] += nn;
}
if (needs_W_notowned[corig]) {
field_type f = is_electric(corig) ? WE_stuff : WH_stuff;
const int nn = is_real ? 1 : 2;
nc[f][ip][Incoming][i] += nn;
nc[f][ip][Outgoing][j] += nn;
comm_sizes[f][ip][pair] += nn;
}
if (is_electric(corig) || is_magnetic(corig)) {
field_type f = is_electric(corig) ? PE_stuff : PH_stuff;
size_t ni = 0, cni = 0;
for (polarization_state *pi = chunks[i]->pol[type(corig)]; pi; pi = pi->next)
for (polarization_state *pj = chunks[j]->pol[type(c)]; pj; pj = pj->next)
if (*pi->s == *pj->s) {
if (pi->data && chunks[i]->is_mine()) {
ni += pi->s->num_internal_notowned_needed(corig, pi->data);
cni += pi->s->num_cinternal_notowned_needed(corig, pi->data);
}
else if (pj->data && chunks[j]->is_mine()) {
ni += pj->s->num_internal_notowned_needed(c, pj->data);
cni += pj->s->num_cinternal_notowned_needed(c, pj->data);
}
}
const size_t nn = (is_real ? 1 : 2) * (cni);
nc[f][ip][Incoming][i] += nn;
nc[f][ip][Outgoing][j] += nn;
comm_sizes[f][ip][pair] += nn;
const connect_phase iip = CONNECT_COPY;
nc[f][iip][Incoming][i] += ni;
nc[f][iip][Outgoing][j] += ni;
comm_sizes[f][iip][pair] += ni;
}
} // if is_mine and owns...
} // loop over j chunks
} // LOOP_OVER_VOL_NOTOWNED
} // FOR_COMPONENTS
// Allocating comm blocks as we go...
FOR_FIELD_TYPES(ft) {
for (int j = 0; j < num_chunks; j++) {
delete[] comm_blocks[ft][j + i * num_chunks];
comm_blocks[ft][j + i * num_chunks] = new realnum[comm_size_tot(ft, j + i * num_chunks)];
}
}
} // loop over i chunks
/* Note that the ordering of the connections arrays must be kept
consistent with the fields::step_boundaries. In particular, we
must set up the connections array so that all of the connections
for process i come before all of the connections for process i'
for i < i' */
// wh stores the current indices in the connections array(s)
size_t *wh[NUM_FIELD_TYPES][3][2];
/* Now allocate the connection arrays... this is still slightly
wasteful (by a factor of 2) because we allocate for chunks we
don't own if we have a connection with them. Removing this waste
would mean a bunch more is_mine() checks below. */
FOR_FIELD_TYPES(f) {
for (int ip = 0; ip < 3; ip++) {
for (int io = 0; io < 2; io++) {
for (int i = 0; i < num_chunks; i++)
chunks[i]->alloc_extra_connections(field_type(f), connect_phase(ip), in_or_out(io),
nc[f][ip][io][i]);
delete[] nc[f][ip][io];
wh[f][ip][io] = new size_t[num_chunks];
}
for (int i = 0; i < num_chunks; i++)
wh[f][ip][Outgoing][i] = 0;
}
}
// Next start setting up the connections...
for (int i = 0; i < num_chunks; i++) {
const grid_volume vi = chunks[i]->gv;
// initialize wh[f][ip][Incoming][j] to sum of comm_sizes for jj < j
FOR_FIELD_TYPES(f) {
for (int ip = 0; ip < 3; ip++) {
wh[f][ip][Incoming][0] = 0;
for (int j = 1; j < num_chunks; ++j)
wh[f][ip][Incoming][j] =
wh[f][ip][Incoming][j - 1] + comm_sizes[f][ip][(j - 1) + i * num_chunks];
}
}
FOR_COMPONENTS(corig) {
if (have_component(corig)) LOOP_OVER_VOL_NOTOWNED(vi, corig, n) {
IVEC_LOOP_ILOC(vi, here);
component c = corig;
// We're looking at a border element...
complex<double> thephase;
if (locate_component_point(&c, &here, &thephase) && !on_metal_boundary(here))
for (int j = 0; j < num_chunks; j++) {
if ((chunks[i]->is_mine() || chunks[j]->is_mine()) && chunks[j]->gv.owns(here) &&
!(is_B(corig) && is_B(c) && B_redundant[5 * i + corig - Bx] &&
B_redundant[5 * j + c - Bx])) {
const connect_phase ip = thephase == 1.0
? CONNECT_COPY
: (thephase == -1.0 ? CONNECT_NEGATE : CONNECT_PHASE);
const ptrdiff_t m = chunks[j]->gv.index(c, here);
{
field_type f = type(c);
if (ip == CONNECT_PHASE)
chunks[i]->connection_phases[f][wh[f][ip][Incoming][j] / 2] = thephase;
DOCMP {
chunks[i]->connections[f][ip][Incoming][wh[f][ip][Incoming][j]++] =
chunks[i]->f[corig][cmp] + n;
chunks[j]->connections[f][ip][Outgoing][wh[f][ip][Outgoing][j]++] =
chunks[j]->f[c][cmp] + m;
}
}
if (needs_W_notowned[corig]) {
field_type f = is_electric(corig) ? WE_stuff : WH_stuff;
if (ip == CONNECT_PHASE)
chunks[i]->connection_phases[f][wh[f][ip][Incoming][j] / 2] = thephase;
DOCMP {
chunks[i]->connections[f][ip][Incoming][wh[f][ip][Incoming][j]++] =
(chunks[i]->f_w[corig][cmp] ? chunks[i]->f_w[corig][cmp]
: chunks[i]->f[corig][cmp]) +
n;
chunks[j]->connections[f][ip][Outgoing][wh[f][ip][Outgoing][j]++] =
(chunks[j]->f_w[c][cmp] ? chunks[j]->f_w[c][cmp] : chunks[j]->f[c][cmp]) +
m;
}
}
if (is_electric(corig) || is_magnetic(corig)) {
field_type f = is_electric(corig) ? PE_stuff : PH_stuff;
for (polarization_state *pi = chunks[i]->pol[type(corig)]; pi; pi = pi->next)
for (polarization_state *pj = chunks[j]->pol[type(c)]; pj; pj = pj->next)
if (*pi->s == *pj->s) {
polarization_state *po = NULL;
if (pi->data && chunks[i]->is_mine())
po = pi;
else if (pj->data && chunks[j]->is_mine())
po = pj;
if (po) {
const connect_phase iip = CONNECT_COPY;
const size_t ni = po->s->num_internal_notowned_needed(corig, po->data);
for (size_t k = 0; k < ni; ++k) {
chunks[i]->connections[f][iip][Incoming][wh[f][iip][Incoming][j]++] =
po->s->internal_notowned_ptr(k, corig, n, pi->data);
chunks[j]->connections[f][iip][Outgoing][wh[f][iip][Outgoing][j]++] =
po->s->internal_notowned_ptr(k, c, m, pj->data);
}
const size_t cni = po->s->num_cinternal_notowned_needed(corig, po->data);
for (size_t k = 0; k < cni; ++k) {
if (ip == CONNECT_PHASE)
chunks[i]->connection_phases[f][wh[f][ip][Incoming][j] / 2] =
thephase;
DOCMP {
chunks[i]->connections[f][ip][Incoming][wh[f][ip][Incoming][j]++] =
po->s->cinternal_notowned_ptr(k, corig, cmp, n, pi->data);
chunks[j]->connections[f][ip][Outgoing][wh[f][ip][Outgoing][j]++] =
po->s->cinternal_notowned_ptr(k, c, cmp, m, pj->data);
}
}
}
}
} // is_electric(corig)
} // if is_mine and owns...
} // loop over j chunks
} // LOOP_OVER_VOL_NOTOWNED
} // FOR_COMPONENTS
} // loop over i chunks
FOR_FIELD_TYPES(f) {
for (int ip = 0; ip < 3; ip++)
for (int io = 0; io < 2; io++)
delete[] wh[f][ip][io];
}
delete[] B_redundant;
}
void fields_chunk::alloc_extra_connections(field_type f, connect_phase ip, in_or_out io,
size_t num) {
if (num == 0) return; // No need to go to any bother...
const size_t tot = num_connections[f][ip][io] + num;
if (io == Incoming && ip == CONNECT_PHASE) {
delete[] connection_phases[f];
connection_phases[f] = new complex<realnum>[tot];
}
typedef realnum *realnum_ptr;
realnum **conn = new realnum_ptr[tot];
if (!conn) abort("Out of memory!\n");
delete[] connections[f][ip][io];
connections[f][ip][io] = conn;
num_connections[f][ip][io] = tot;
}
} // namespace meep