-
Notifications
You must be signed in to change notification settings - Fork 641
/
Copy pathfields.cpp
811 lines (735 loc) · 25.3 KB
/
fields.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/* Copyright (C) 2005-2022 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <algorithm>
#include <utility>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <complex>
#include "meep.hpp"
#include "meep_internals.hpp"
using namespace std;
namespace meep {
fields::fields(structure *s, double m, double beta, bool zero_fields_near_cylorigin,
int loop_tile_base_db, int loop_tile_base_eh)
: S(s->S), gv(s->gv), user_volume(s->user_volume), v(s->v), m(m), beta(beta),
loop_tile_base_db(loop_tile_base_db), loop_tile_base_eh(loop_tile_base_eh),
working_on(×_spent) {
shared_chunks = s->shared_chunks;
components_allocated = false;
synchronized_magnetic_fields = 0;
outdir = new char[strlen(s->outdir) + 1];
strcpy(outdir, s->outdir);
if (gv.dim == Dcyl) S = S + r_to_minus_r_symmetry(m);
phasein_time = 0;
for (int d = 0; d < 5; d++) {
k[d] = 0.0;
eikna[d] = 1.0;
}
is_real = 0;
a = gv.a;
dt = s->dt;
t = 0;
sources = NULL;
fluxes = NULL;
// Time stuff:
reset_timers();
last_step_output_wall_time = -1;
num_chunks = s->num_chunks;
typedef fields_chunk *fields_chunk_ptr;
chunks = new fields_chunk_ptr[num_chunks];
for (int i = 0; i < num_chunks; i++)
chunks[i] = new fields_chunk(s->chunks[i], outdir, m, beta, zero_fields_near_cylorigin, i,
loop_tile_base_db);
FOR_FIELD_TYPES(ft) {
typedef realnum *realnum_ptr;
comm_blocks[ft] = new realnum_ptr[num_chunks * num_chunks];
for (int i = 0; i < num_chunks * num_chunks; i++)
comm_blocks[ft][i] = 0;
}
for (int b = 0; b < 2; b++)
FOR_DIRECTIONS(d) {
if (gv.has_boundary((boundary_side)b, d))
boundaries[b][d] = Metallic;
else
boundaries[b][d] = None;
}
chunk_connections_valid = false;
changed_materials = true;
// unit directions are periodic by default:
FOR_DIRECTIONS(d) {
if (gv.has_boundary(High, d) && gv.has_boundary(Low, d) && d != R &&
s->user_volume.num_direction(d) == 1)
use_bloch(d, 0.0);
}
}
fields::fields(const fields &thef)
: S(thef.S), gv(thef.gv), user_volume(thef.user_volume), v(thef.v), working_on(×_spent) {
shared_chunks = thef.shared_chunks;
components_allocated = thef.components_allocated;
synchronized_magnetic_fields = thef.synchronized_magnetic_fields;
outdir = new char[strlen(thef.outdir) + 1];
strcpy(outdir, thef.outdir);
m = thef.m;
beta = thef.beta;
phasein_time = thef.phasein_time;
for (int d = 0; d < 5; d++) {
k[d] = thef.k[d];
eikna[d] = thef.eikna[d];
}
is_real = thef.is_real;
a = thef.a;
dt = thef.dt;
t = thef.t;
sources = NULL;
fluxes = NULL;
// Time stuff:
reset_timers();
last_step_output_wall_time = -1;
num_chunks = thef.num_chunks;
typedef fields_chunk *fields_chunk_ptr;
chunks = new fields_chunk_ptr[num_chunks];
for (int i = 0; i < num_chunks; i++)
chunks[i] = new fields_chunk(*thef.chunks[i], i);
FOR_FIELD_TYPES(ft) {
typedef realnum *realnum_ptr;
comm_blocks[ft] = new realnum_ptr[num_chunks * num_chunks];
for (int i = 0; i < num_chunks * num_chunks; i++)
comm_blocks[ft][i] = 0;
}
for (int b = 0; b < 2; b++)
FOR_DIRECTIONS(d) { boundaries[b][d] = thef.boundaries[b][d]; }
chunk_connections_valid = false;
changed_materials = true;
}
fields::~fields() {
for (int i = 0; i < num_chunks; i++)
delete chunks[i];
delete[] chunks;
FOR_FIELD_TYPES(ft) {
for (int i = 0; i < num_chunks * num_chunks; i++)
delete[] comm_blocks[ft][i];
delete[] comm_blocks[ft];
}
delete sources;
delete fluxes;
delete[] outdir;
}
void fields::use_real_fields() {
LOOP_OVER_DIRECTIONS(gv.dim, d) {
if (boundaries[High][d] == Periodic && k[d] != 0.0)
meep::abort("Can't use real fields with bloch boundary conditions!\n");
}
is_real = 1;
for (int i = 0; i < num_chunks; i++)
chunks[i]->use_real_fields();
// don't need to call sync_chunk_connections() since use_real_fields()
// should always be called on every process
chunk_connections_valid = false;
}
bool fields::have_component(component c) {
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->f[c][0]) return true;
return false;
}
fields_chunk::~fields_chunk() {
is_real = 0; // So that we can make sure to delete everything...
// for mu=1 non-PML regions, H==B to save space/time - don't delete twice!
DOCMP2 FOR_H_AND_B(hc, bc) {
if (f[hc][cmp] == f[bc][cmp]) f[bc][cmp] = NULL;
}
DOCMP2 FOR_COMPONENTS(c) {
delete[] f[c][cmp];
delete[] f_u[c][cmp];
delete[] f_w[c][cmp];
delete[] f_cond[c][cmp];
delete[] f_minus_p[c][cmp];
delete[] f_w_prev[c][cmp];
delete[] f_backup[c][cmp];
delete[] f_u_backup[c][cmp];
delete[] f_w_backup[c][cmp];
delete[] f_cond_backup[c][cmp];
}
delete[] f_rderiv_int;
while (dft_chunks) {
dft_chunk *nxt = dft_chunks->next_in_chunk;
// keep the dft chunk in memory for adjoint calculations
if (dft_chunks->persist)
dft_chunks->fc = NULL;
else
delete dft_chunks;
dft_chunks = nxt;
}
FOR_FIELD_TYPES(ft) { delete[] zeroes[ft]; }
FOR_FIELD_TYPES(ft) {
for (polarization_state *cur = pol[ft]; cur;) {
polarization_state *p = cur;
cur = cur->next;
p->s->delete_internal_data(p->data);
delete p;
}
}
if (s->refcount-- <= 1) delete s; // delete if not shared
if (new_s && new_s->refcount-- <= 1) delete new_s; // delete if not shared
}
void split_into_tiles(grid_volume gvol, std::vector<grid_volume> *result,
const size_t loop_tile_base) {
if (gvol.nowned_min() < loop_tile_base) {
result->push_back(gvol);
return;
}
int best_split_point;
direction best_split_direction;
gvol.tile_split(best_split_point, best_split_direction);
grid_volume left_gvol = gvol.split_at_fraction(false, best_split_point, best_split_direction);
split_into_tiles(left_gvol, result, loop_tile_base);
grid_volume right_gvol = gvol.split_at_fraction(true, best_split_point, best_split_direction);
split_into_tiles(right_gvol, result, loop_tile_base);
return;
}
// First check that the tile volumes gvs do not intersect and that they add
// up to the chunk's total grid_volume gv
void check_tiles(grid_volume gv, const std::vector<grid_volume> &gvs) {
grid_volume vol_intersection;
for (size_t i = 0; i < gvs.size(); i++)
for (size_t j = i + 1; j < gvs.size(); j++)
if (gvs[i].intersect_with(gvs[j], &vol_intersection))
meep::abort("gvs[%zu] intersects with gvs[%zu]\n", i, j);
size_t sum = 0;
for (const auto &sub_gv : gvs) {
sum += sub_gv.nowned_min();
}
size_t v_grid_points = 1;
LOOP_OVER_DIRECTIONS(gv.dim, d) { v_grid_points *= gv.num_direction(d); }
if (sum != v_grid_points)
meep::abort("v_grid_points = %zu, sum(tiles) = %zu\n", v_grid_points, sum);
}
fields_chunk::fields_chunk(structure_chunk *the_s, const char *od, double m, double beta,
bool zero_fields_near_cylorigin, int chunkidx, int loop_tile_base_db)
: gv(the_s->gv), v(the_s->v), m(m), zero_fields_near_cylorigin(zero_fields_near_cylorigin),
beta(beta) {
s = the_s;
chunk_idx = chunkidx;
s->refcount++;
outdir = od;
new_s = NULL;
is_real = 0;
a = s->a;
Courant = s->Courant;
dt = s->dt;
dft_chunks = NULL;
if (loop_tile_base_db > 0) {
split_into_tiles(gv, &gvs_tiled, loop_tile_base_db);
check_tiles(gv, gvs_tiled);
}
else { gvs_tiled.push_back(gv); }
FOR_FIELD_TYPES(ft) {
polarization_state *cur = NULL;
pol[ft] = NULL;
for (susceptibility *chiP = the_s->chiP[ft]; chiP; chiP = chiP->next) {
polarization_state *p = new polarization_state;
// P and data lazily allocated in update_pols
p->data = NULL;
p->s = chiP;
p->next = NULL;
if (cur) {
cur->next = p;
cur = p;
}
else { pol[ft] = cur = p; }
}
}
doing_solve_cw = false;
solve_cw_omega = 0.0;
FOR_COMPONENTS(c) DOCMP2 {
f[c][cmp] = NULL;
f_u[c][cmp] = NULL;
f_w[c][cmp] = NULL;
f_cond[c][cmp] = NULL;
f_minus_p[c][cmp] = NULL;
f_w_prev[c][cmp] = NULL;
f_backup[c][cmp] = NULL;
f_u_backup[c][cmp] = NULL;
f_w_backup[c][cmp] = NULL;
f_cond_backup[c][cmp] = NULL;
}
f_rderiv_int = NULL;
FOR_FIELD_TYPES(ft) {
zeroes[ft] = NULL;
num_zeroes[ft] = 0;
}
figure_out_step_plan();
}
fields_chunk::fields_chunk(const fields_chunk &thef, int chunkidx) : gv(thef.gv), v(thef.v) {
chunk_idx = chunkidx;
s = thef.s;
s->refcount++;
outdir = thef.outdir;
m = thef.m;
zero_fields_near_cylorigin = thef.zero_fields_near_cylorigin;
beta = thef.beta;
new_s = thef.new_s;
new_s->refcount++;
is_real = thef.is_real;
a = thef.a;
Courant = thef.Courant;
dt = thef.dt;
dft_chunks = NULL;
gvs_tiled = thef.gvs_tiled;
FOR_FIELD_TYPES(ft) { gvs_eh[ft] = thef.gvs_eh[ft]; }
FOR_FIELD_TYPES(ft) {
polarization_state *cur = NULL;
for (polarization_state *ocur = thef.pol[ft]; ocur; ocur = ocur->next) {
polarization_state *p = new polarization_state;
p->data = NULL;
p->s = ocur->s;
p->next = NULL;
pol[ft] = NULL;
if (ocur->data) p->data = p->s->copy_internal_data(p->data);
if (cur) {
cur->next = p;
cur = p;
}
else { pol[ft] = cur = p; }
}
}
doing_solve_cw = thef.doing_solve_cw;
solve_cw_omega = thef.solve_cw_omega;
FOR_COMPONENTS(c) DOCMP2 {
f[c][cmp] = NULL;
f_u[c][cmp] = NULL;
f_w[c][cmp] = NULL;
f_cond[c][cmp] = NULL;
f_backup[c][cmp] = NULL;
f_u_backup[c][cmp] = NULL;
f_w_backup[c][cmp] = NULL;
f_cond_backup[c][cmp] = NULL;
}
FOR_COMPONENTS(c) DOCMP {
if (!is_magnetic(c) && thef.f[c][cmp]) {
f[c][cmp] = new realnum[gv.ntot()];
memcpy(f[c][cmp], thef.f[c][cmp], sizeof(realnum) * gv.ntot());
}
if (thef.f_u[c][cmp]) {
f_u[c][cmp] = new realnum[gv.ntot()];
memcpy(f_u[c][cmp], thef.f_u[c][cmp], sizeof(realnum) * gv.ntot());
}
if (thef.f_w[c][cmp]) {
f_w[c][cmp] = new realnum[gv.ntot()];
memcpy(f_w[c][cmp], thef.f_w[c][cmp], sizeof(realnum) * gv.ntot());
}
if (thef.f_cond[c][cmp]) {
f_cond[c][cmp] = new realnum[gv.ntot()];
memcpy(f_cond[c][cmp], thef.f_cond[c][cmp], sizeof(realnum) * gv.ntot());
}
}
FOR_MAGNETIC_COMPONENTS(c) DOCMP {
if (thef.f[c][cmp] == thef.f[c - Hx + Bx][cmp])
f[c][cmp] = f[c - Hx + Bx][cmp];
else if (thef.f[c][cmp]) {
f[c][cmp] = new realnum[gv.ntot()];
memcpy(f[c][cmp], thef.f[c][cmp], sizeof(realnum) * gv.ntot());
}
}
FOR_FIELD_TYPES(ft) {
zeroes[ft] = NULL;
num_zeroes[ft] = 0;
}
FOR_COMPONENTS(c) DOCMP2 {
if (thef.f_minus_p[c][cmp]) {
f_minus_p[c][cmp] = new realnum[gv.ntot()];
memcpy(f_minus_p[c][cmp], thef.f_minus_p[c][cmp], sizeof(realnum) * gv.ntot());
}
if (thef.f_w_prev[c][cmp]) {
f_w_prev[c][cmp] = new realnum[gv.ntot()];
memcpy(f_w_prev[c][cmp], thef.f_w_prev[c][cmp], sizeof(realnum) * gv.ntot());
}
}
f_rderiv_int = NULL;
figure_out_step_plan();
}
static inline bool cross_negative(direction a, direction b) {
if (a >= R) a = direction(a - 3);
if (b >= R) b = direction(b - 3);
return ((3 + b - a) % 3) == 2;
}
static inline direction cross(direction a, direction b) {
if (a == b) meep::abort("bug - cross expects different directions");
bool dcyl = a >= R || b >= R;
if (a >= R) a = direction(a - 3);
if (b >= R) b = direction(b - 3);
direction c = direction((3 + 2 * a - b) % 3);
if (dcyl && c < Z) return direction(c + 3);
return c;
}
/* Call this whenever we modify the structure_chunk (fields_chunk::s) to
implement copy-on-write semantics. See also structure::changing_chunks. */
void fields_chunk::changing_structure() {
if (s->refcount > 1) { // this chunk is shared, so make a copy
s->refcount--;
s = new structure_chunk(s);
}
}
void fields::figure_out_step_plan() {
for (int i = 0; i < num_chunks; ++i)
if (chunks[i]->is_mine()) chunks[i]->figure_out_step_plan();
}
void fields_chunk::figure_out_step_plan() {
FOR_COMPONENTS(cc) { have_minus_deriv[cc] = have_plus_deriv[cc] = false; }
FOR_COMPONENTS(c1) {
if (f[c1][0]) {
const direction dc1 = component_direction(c1);
// Figure out which field components contribute.
FOR_COMPONENTS(c2)
if ((is_electric(c1) && is_magnetic(c2)) || (is_D(c1) && is_magnetic(c2)) ||
(is_magnetic(c1) && is_electric(c2)) || (is_B(c1) && is_electric(c2))) {
const direction dc2 = component_direction(c2);
if (dc1 != dc2 && gv.has_field(c2) && gv.has_field(c1) &&
(has_direction(gv.dim, cross(dc1, dc2)) ||
(gv.dim == Dcyl && has_field_direction(gv.dim, cross(dc1, dc2))))) {
direction d_deriv = cross(dc1, dc2);
if (cross_negative(dc2, dc1)) {
minus_component[c1] = c2;
have_minus_deriv[c1] = true;
minus_deriv_direction[c1] = d_deriv;
}
else {
plus_component[c1] = c2;
have_plus_deriv[c1] = true;
plus_deriv_direction[c1] = d_deriv;
}
}
}
}
}
}
bool is_tm(component c) {
switch (c) {
case Hx:
case Hy:
case Bx:
case By:
case Ez:
case Dz: return true;
default: return false;
}
return false;
}
static bool is_like(ndim d, component c1, component c2) {
if (d != D2) return true;
return !(is_tm(c1) ^ is_tm(c2));
}
// this function should ordinarily not be called directly;
// instead it should be called via require_component,
// since only require_component knows what other field components
// need to be allocated in addition to c
bool fields_chunk::alloc_f(component c) {
bool changed = false;
if (is_mine()) DOCMP {
if (!f[c][cmp]) {
changed = true;
if (is_magnetic(c)) {
/* initially, we just set H == B ... later on, we lazily allocate
H fields if needed (if mu != 1 or in PML) in update_eh */
component bc = direction_component(Bx, component_direction(c));
if (!f[bc][cmp]) {
f[bc][cmp] = new realnum[gv.ntot()];
for (size_t i = 0; i < gv.ntot(); i++)
f[bc][cmp][i] = 0.0;
}
f[c][cmp] = f[bc][cmp];
}
else {
f[c][cmp] = new realnum[gv.ntot()];
for (size_t i = 0; i < gv.ntot(); i++)
f[c][cmp][i] = 0.0;
}
}
}
return changed;
}
// allocate fields for components required by any source on any process
// ... this is needed after calling the low-level fields::add_srcdata
void fields::require_source_components() {
fix_boundary_sources(); // needed if add_srcdata put sources on non-owned points
int needed[NUM_FIELD_COMPONENTS];
memset(needed, 0, sizeof(needed));
for (int i = 0; i < num_chunks; i++) {
FOR_FIELD_TYPES(ft) {
for (const auto &src : chunks[i]->get_sources(ft)) {
needed[src.c] = 1;
}
}
}
int allneeded[NUM_FIELD_COMPONENTS];
am_now_working_on(MpiAllTime);
or_to_all(needed, allneeded, NUM_FIELD_COMPONENTS);
finished_working();
bool aniso2d = is_aniso2d();
for (int c = 0; c < NUM_FIELD_COMPONENTS; ++c)
if (allneeded[c]) _require_component(component(c), aniso2d);
sync_chunk_connections();
}
// check if we are in 2d but anisotropy couples xy with z
bool fields::is_aniso2d() {
bool aniso2d = false;
if (gv.dim == D2) {
int i;
for (i = 0; i < num_chunks; ++i)
if (chunks[i]->s->has_chi(Ex, Z) || chunks[i]->s->has_chi(Ey, Z) ||
chunks[i]->s->has_chi(Ez, X) || chunks[i]->s->has_chi(Ez, Y) ||
chunks[i]->s->has_chi(Hx, Z) || chunks[i]->s->has_chi(Hy, Z) ||
chunks[i]->s->has_chi(Hz, X) || chunks[i]->s->has_chi(Hz, Y))
break;
am_now_working_on(MpiAllTime);
aniso2d = or_to_all(i < num_chunks);
finished_working();
}
else if (beta != 0)
meep::abort("Nonzero beta unsupported in dimensions other than 2.");
if (aniso2d && beta != 0 && is_real)
meep::abort("Nonzero beta need complex fields when mu/epsilon couple TE and TM");
return aniso2d || (beta != 0); // beta couples TE/TM
}
void fields::_require_component(component c, bool aniso2d) {
if (!gv.has_field(c))
meep::abort("cannot require a %s component in a %s grid", component_name(c),
dimension_name(gv.dim));
components_allocated = true;
// allocate fields if they haven't been allocated yet for this component
int need_to_reconnect = 0;
FOR_COMPONENTS(c_alloc) {
if (gv.has_field(c_alloc) && (is_like(gv.dim, c, c_alloc) || aniso2d))
for (int i = 0; i < num_chunks; ++i)
if (chunks[i]->alloc_f(c_alloc)) need_to_reconnect++;
}
if (need_to_reconnect) {
figure_out_step_plan();
// we will eventually call sync_chunk_connections(), in either require_component(c)
// or require_components(), to synchronize this across processes:
chunk_connections_valid = false;
}
}
void fields_chunk::add_source(field_type ft, src_vol &&src) {
auto it = std::find_if(sources[ft].begin(), sources[ft].end(),
[&src](const src_vol &other) { return src_vol::combinable(src, other); });
if (it != sources[ft].end()) {
it->add_amplitudes_from(src);
return;
}
sources[ft].push_back(std::move(src));
}
void fields_chunk::remove_sources() {
FOR_FIELD_TYPES(ft) { sources[ft].clear(); }
}
void fields::remove_sources() {
delete sources;
sources = NULL;
for (int i = 0; i < num_chunks; i++)
chunks[i]->remove_sources();
}
void fields_chunk::remove_susceptibilities(bool shared_chunks) {
FOR_FIELD_TYPES(ft) {
for (polarization_state *cur = pol[ft]; cur;) {
polarization_state *p = cur;
cur = cur->next;
p->s->delete_internal_data(p->data);
delete p;
}
pol[ft] = NULL;
}
if (!shared_chunks) { changing_structure(); }
s->remove_susceptibilities();
}
void fields::remove_susceptibilities() {
changed_materials = true;
for (int i = 0; i < num_chunks; i++)
chunks[i]->remove_susceptibilities(shared_chunks);
}
void fields::remove_fluxes() {
delete fluxes;
fluxes = NULL;
}
void fields_chunk::zero_fields() {
FOR_COMPONENTS(c) DOCMP {
#define ZERO(array) \
if (array) memset(array, 0, sizeof(realnum) * gv.ntot())
ZERO(f[c][cmp]);
ZERO(f_u[c][cmp]);
ZERO(f_w[c][cmp]);
ZERO(f_cond[c][cmp]);
ZERO(f_backup[c][cmp]);
ZERO(f_u_backup[c][cmp]);
ZERO(f_w_backup[c][cmp]);
ZERO(f_cond_backup[c][cmp]);
#undef ZERO
}
if (is_mine()) FOR_FIELD_TYPES(ft) {
for (polarization_state *p = pol[ft]; p; p = p->next) {
if (p->data) p->s->init_internal_data(f, dt, gv, p->data);
}
}
}
void fields::zero_fields() {
for (int i = 0; i < num_chunks; i++)
chunks[i]->zero_fields();
}
void fields::reset() {
remove_sources();
remove_fluxes();
zero_fields();
t = 0;
}
void fields_chunk::use_real_fields() {
is_real = 1;
// for mu=1 non-PML regions, H==B to save space/time - don't delete twice!
FOR_H_AND_B(hc, bc) {
if (f[hc][1] == f[bc][1]) f[bc][1] = NULL;
}
FOR_COMPONENTS(c) if (f[c][1]) {
delete[] f[c][1];
f[c][1] = 0;
}
if (is_mine()) FOR_FIELD_TYPES(ft) {
for (polarization_state *p = pol[ft]; p; p = p->next) {
if (p->data) { // TODO: print an error message in this case?
p->s->delete_internal_data(p->data);
p->data = p->s->new_internal_data(f, gv);
p->s->init_internal_data(f, dt, gv, p->data);
}
}
}
}
int fields::phase_in_material(const structure *snew, double time) {
if (snew->num_chunks != num_chunks)
meep::abort("Can only phase in similar sets of chunks: %d vs %d\n", snew->num_chunks,
num_chunks);
for (int i = 0; i < num_chunks; i++)
if (chunks[i]->is_mine()) chunks[i]->phase_in_material(snew->chunks[i]);
phasein_time = (int)(time / dt);
changed_materials = true;
// FIXME: how to handle changes in susceptibilities?
return phasein_time;
}
void fields_chunk::phase_in_material(structure_chunk *snew) {
new_s = snew;
new_s->refcount++;
}
int fields::is_phasing() { return phasein_time > 0; }
bool fields::equal_layout(const fields &f) const {
if (a != f.a || num_chunks != f.num_chunks || v != f.v || S != f.S) return false;
for (int d = 0; d < 5; d++)
if (k[d] != f.k[d]) return false;
for (int i = 0; i < num_chunks; ++i)
if (chunks[i]->a != f.chunks[i]->a || chunks[i]->v != f.chunks[i]->v) return false;
return true;
}
// total computational grid_volume, including regions redundant by symmetry
volume fields::total_volume(void) const {
volume gv0 = gv.interior();
volume v = gv0;
for (int n = 1; n < S.multiplicity(); ++n)
v = v | S.transform(gv0, n);
if (v.dim == Dcyl && v.in_direction_min(R) < 0) v.set_direction_min(R, 0);
return v;
}
/* One-pixel periodic dimensions are used almost exclusively to
emulate lower-dimensional computations, so if the user passes an
empty size in that direction, they probably really intended to
specify that whole dimension. This function detects that case. */
bool fields::nosize_direction(direction d) const {
return (gv.has_boundary(Low, d) && gv.has_boundary(High, d) && boundaries[Low][d] == Periodic &&
boundaries[High][d] == Periodic && gv.num_direction(d) == 1);
}
void fields::set_solve_cw_omega(complex<double> omega) {
for (int i = 0; i < num_chunks; ++i)
chunks[i]->set_solve_cw_omega(omega);
}
void fields::unset_solve_cw_omega() {
for (int i = 0; i < num_chunks; ++i)
chunks[i]->unset_solve_cw_omega();
}
void fields::log(const char *prefix) {
master_printf("%sFields State:\n", prefix);
master_printf("%s a = %g, dt = %g\n", prefix, a, dt);
master_printf("%s m = %g, beta = %g\n", prefix, m, beta);
master_printf("%s t = %d, phasein_time = %d, is_real = %d\n", prefix, t, phasein_time, is_real);
master_printf("\n");
master_printf("%s num_chunks = %d (shared=%d)\n", prefix, num_chunks, shared_chunks);
}
/* implement mirror boundary conditions for i outside 0..n-1: */
int mirrorindex(int i, int n) { return i >= n ? 2 * n - 1 - i : (i < 0 ? -1 - i : i); }
/* map the cell coordinates into the range [0,1].
anything outside [0,1] is *mirror* reflected into [0,1] */
void map_coordinates(double rx, double ry, double rz, int nx, int ny, int nz, int &x1, int &y1,
int &z1, int &x2, int &y2, int &z2, double &dx, double &dy, double &dz,
bool do_fabs) {
/* mirror boundary conditions for r just beyond the boundary */
rx = rx < 0.0 ? -rx : (rx > 1.0 ? 1.0 - rx : rx);
ry = ry < 0.0 ? -ry : (ry > 1.0 ? 1.0 - ry : ry);
rz = rz < 0.0 ? -rz : (rz > 1.0 ? 1.0 - rz : rz);
/* get the point corresponding to r in the epsilon array grid: */
x1 = mirrorindex(int(rx * nx), nx);
y1 = mirrorindex(int(ry * ny), ny);
z1 = mirrorindex(int(rz * nz), nz);
/* get the difference between (x,y,z) and the actual point */
dx = rx * nx - x1 - 0.5;
dy = ry * ny - y1 - 0.5;
dz = rz * nz - z1 - 0.5;
/* get the other closest point in the grid, with mirror boundaries: */
x2 = mirrorindex(dx >= 0.0 ? x1 + 1 : x1 - 1, nx);
y2 = mirrorindex(dy >= 0.0 ? y1 + 1 : y1 - 1, ny);
z2 = mirrorindex(dz >= 0.0 ? z1 + 1 : z1 - 1, nz);
/* take abs(d{xyz}) to get weights for {xyz} and {xyz}2: */
if (do_fabs) {
dx = fabs(dx);
dy = fabs(dy);
dz = fabs(dz);
}
}
/* linearly interpolate a given point in a 3d grid of data. */
double linear_interpolate(double rx, double ry, double rz, double *data, int nx, int ny, int nz,
int stride) {
int x1, y1, z1, x2, y2, z2;
double dx, dy, dz;
map_coordinates(rx, ry, rz, nx, ny, nz, x1, y1, z1, x2, y2, z2, dx, dy, dz);
/* define a macro to give us data(x,y,z) on the grid,
in row-major order (the order used by HDF5): */
#define D(x, y, z) (data[(((x)*ny + (y)) * nz + (z)) * stride])
return (((D(x1, y1, z1) * (1.0 - dx) + D(x2, y1, z1) * dx) * (1.0 - dy) +
(D(x1, y2, z1) * (1.0 - dx) + D(x2, y2, z1) * dx) * dy) *
(1.0 - dz) +
((D(x1, y1, z2) * (1.0 - dx) + D(x2, y1, z2) * dx) * (1.0 - dy) +
(D(x1, y2, z2) * (1.0 - dx) + D(x2, y2, z2) * dx) * dy) *
dz);
#undef D
}
bool operator==(const comms_key &lhs, const comms_key &rhs) {
return (lhs.ft == rhs.ft) && (lhs.phase == rhs.phase) && (lhs.pair == rhs.pair);
}
void fields::change_m(double new_m) {
m = new_m;
if ((new_m != 0) && (is_real)) {
meep::abort("The simulation must be reinitialized if switching to complex fields!\n");
}
if ((new_m == 0) && (!is_real)) { use_real_fields(); }
for (int i = 0; i < num_chunks; i++) {
chunks[i]->change_m(new_m);
}
}
void fields_chunk::change_m(double new_m) { m = new_m; }
} // namespace meep