From bb16c2894bb0913f4a643dd691b979aa1f6e98fa Mon Sep 17 00:00:00 2001 From: mochen4 Date: Thu, 1 Sep 2022 15:16:57 -0400 Subject: [PATCH] New Connectivity Constraint (#2207) * fix phase * new connectivity constraint * rm outdated tutorial * empty commit * new connectivity constraint * minor bug fix Co-authored-by: Mo Chen --- python/adjoint/connectivity.py | 461 ++++++++++-------- .../ConnectivityConstraint.ipynb | 276 ----------- 2 files changed, 258 insertions(+), 479 deletions(-) delete mode 100644 python/examples/adjoint_optimization/ConnectivityConstraint.ipynb diff --git a/python/adjoint/connectivity.py b/python/adjoint/connectivity.py index 450e6f4eb..ed1c60e8a 100644 --- a/python/adjoint/connectivity.py +++ b/python/adjoint/connectivity.py @@ -1,212 +1,267 @@ -""" -Connectivity constraint inspired by https://link.springer.com/article/10.1007/s00158-016-1459-5 -Solve and find adjoint gradients for [-div (k grad) + alpha^2 (1-rho)k + alpha0^2]T=0. -BC: Dirichlet on last slice rho[-Nx*Ny:], 0 outside the first slice, and Neumann on sides. -Mo Chen -""" import numpy as np -from scipy.sparse import csc_matrix, csr_matrix, diags, eye, kron, lil_matrix from scipy.sparse.linalg import cg, spsolve +from scipy.sparse import kron, diags, csr_matrix, eye, csc_matrix +from autograd import numpy as npa +from autograd import grad -class ConnectivityConstraint: - def __init__( - self, - nx, - ny, - nz, - k0=1000, - zeta=0, - sp_solver=cg, - alpha=None, - alpha0=None, - thresh=0.1, - p=2, - ): - # zeta is to prevent singularity when damping is zero; with damping, zeta should be zero - # set ny=1 for 2D - self.nx, self.ny, self.nz = nx, ny, nz - self.n = nx * ny * nz - self.m = nx * ny * (nz - 1) - self.solver = sp_solver - self.k0, self.zeta = k0, zeta - self.thresh = thresh - self.p = p - - # default alpha and alpha0 - self.alpha = alpha if alpha != None else 0.1 * min(1 / nx, 1 / ny, 1 / nz) - self.alpha0 = alpha0 if alpha0 != None else -np.log(thresh) / min(nx, nz) - - def forward(self, rho_vector): - self.rho_vector = rho_vector - # gradient and -div operator - gx = diags([-1, 1], [0, 1], shape=(self.nx - 1, self.nx), format="csr") - dx = gx.copy().transpose() - gy = diags([-1, 1], [0, 1], shape=(self.ny - 1, self.ny), format="csr") - dy = gy.copy().transpose() - gz = diags([1, -1], [0, -1], shape=(self.nz, self.nz), format="csr") - dz = diags([1, -1], [0, 1], shape=(self.nz - 1, self.nz), format="csr") - - # kron product for 2D - Ix, Iy, Iz = eye(self.nx), eye(self.ny), eye(self.nz - 1) - self.gx, self.gy, self.gz = ( - kron(Iz, kron(Iy, gx)), - kron(Iz, kron(gy, Ix)), - kron(gz, kron(Iy, Ix)), - ) - self.dx, self.dy, self.dz = ( - kron(Iz, kron(Iy, dx)), - kron(Iz, kron(dy, Ix)), - kron(dz, kron(Iy, Ix)), - ) +def constraint_connectivity( + rho, + nx, + ny, + nz, + cond_v=1, + cond_s=1e6, + src_v=0, + src_s=1, + solver=spsolve, + thresh=None, + p=4, + need_grad=True, +): + rho = np.reshape(rho, (nz, ny, nx)) + n = nx * ny * nz - # conductivity based on rho - rho_pad = np.reshape(rho_vector, (self.nz, self.ny, self.nx)) - rhox = np.array( - [ - 0.5 * (rho_pad[k, j, i] + rho_pad[k, j, i + 1]) - for k in range(self.nz - 1) - for j in range(self.ny) - for i in range(self.nx - 1) - ] - ) - self.rhox = rhox - rhoy = np.array( - [ - 0.5 * (rho_pad[k, j, i] + rho_pad[k, j + 1, i]) - for k in range(self.nz - 1) - for j in range(self.ny - 1) - for i in range(self.nx) - ] - ) - self.rhoy = rhoy - rhoz = np.array( - [ - 0.5 * (rho_pad[k, j, i] + rho_pad[k + 1, j, i]) - for k in range(self.nz - 1) - for j in range(self.ny) - for i in range(self.nx) - ] - ) - rhoz = np.insert(rhoz, [0] * self.nx * self.ny, 0) # 0 outside first row - self.rhoz = rhoz - kx, ky, kz = ( - diags((self.zeta + (1 - self.zeta) * rhox) * self.k0), - diags((self.zeta + (1 - self.zeta) * rhoy) * self.k0), - diags((self.zeta + (1 - self.zeta) * rhoz) * self.k0), - ) - self.kx, self.ky, self.kz = kx, ky, kz - # matrices in x, y, z - self.Lx, self.Ly, self.Lz = ( - self.dx * kx * self.gx, - self.dy * ky * self.gy, - self.dz * kz * self.gz, - ) + if ny == 1: + path = nx * nz / 2 + phi = 0.5 * path * path / cond_s # estimate of warmest connected structure + else: + path = nx * ny * nz / 4 + phi = 0.5 * path * path / cond_s + if not thresh: + thresh = phi - # Dirichlet condition on the last row becomes term on the RHS - Bz = csc_matrix(self.Lz)[:, -self.nx * self.ny :] - rhs = -Bz.sum(axis=1) - self.rhs = rhs - - # LHS operator after moving the boundary term to the RHS - eq = self.Lz[:, : -self.nx * self.ny] + self.Lx + self.Ly - self.eq = eq - # add damping - damping = self.k0 * self.alpha**2 * diags( - 1 - rho_vector[: -self.nx * self.ny] - ) + diags([self.alpha0**2], shape=(self.m, self.m)) - self.A = eq + damping - self.damping = damping - if self.solver == spsolve: - self.T = self.solver(csr_matrix(self.A), rhs) - else: - self.T, sinfo = self.solver(csr_matrix(self.A), rhs) - # exclude last row of rho and calculate weighted average of temperature - self.rho_vec = rho_vector[: -self.nx * self.ny] - - self.Td_p = (1 - self.T) ** self.p - self.Td = (sum(self.Td_p * self.rho_vec) / sum(self.rho_vec)) ** (1 / self.p) - return self.Td - - def adjoint(self): - T_p1 = -((self.T - 1) ** (self.p - 1)) - dg_dT = self.Td ** (1 - self.p) * (T_p1 * self.rho_vec) / sum(self.rho_vec) - if self.solver == spsolve: - return self.solver(csr_matrix(self.A.transpose()), dg_dT) - aT, _ = self.solver(csr_matrix(self.A.transpose()), dg_dT) - return aT - - def calculate_grad(self): - dg_dp = np.zeros(self.n) - dg_dp[: -self.nx * self.ny] = (self.Td_p * sum(self.rho_vec)) / sum( - self.rho_vec - ) ** 2 - dg_dp[: -self.nx * self.ny] = ( - dg_dp[: -self.nx * self.ny] - - sum(self.Td_p * self.rho_vec) / sum(self.rho_vec) ** 2 - ) - dg_dp = self.Td ** (1 - self.p) * dg_dp / self.p + # gradient matrices + gx = diags([-1, 1], [0, 1], shape=(nx - 1, nx), format="csr") + gy = diags([-1, 1], [0, 1], shape=(ny - 1, ny), format="csr") + gz = diags([-1, 1], [0, 1], shape=(nz, nz), format="csr") + # -div matrices + dx, dy, dz = gx.copy().transpose(), gy.copy().transpose(), gz.copy().transpose() + # 1D -> 3D + Ix, Iy, Iz = eye(nx), eye(ny), eye(nz) + gx, gy, gz = kron(Iz, kron(Iy, gx)), kron(Iz, kron(gy, Ix)), kron(gz, kron(Iy, Ix)) + dx, dy, dz = kron(Iz, kron(Iy, dx)), kron(Iz, kron(dy, Ix)), kron(dz, kron(Iy, Ix)) - dAx = lil_matrix((self.m, self.n)) - gxT = np.reshape(self.gx * self.T, (-1, 1)) - drhox = kron( - eye(self.nz - 1), - kron(eye(self.ny), diags([0.5, 0.5], [0, 1], shape=[self.nx - 1, self.nx])), - ) - dAx[:, : -self.nx * self.ny] = ( - (1 - self.zeta) * self.k0 * lil_matrix(self.dx * drhox.multiply(gxT)) - ) # element-wise product - - dAy = lil_matrix((self.m, self.n)) - gyT = np.reshape(self.gy * self.T, (-1, 1)) - drhoy = kron( - kron( - eye(self.nz - 1), - diags([0.5, 0.5], [0, 1], shape=[self.ny - 1, self.ny]), - ), - eye(self.nx), + # harmonic mean as mid-point conductivity and derivatives + f = lambda x, y: 2 * x * y / (x + y) + fx = lambda x, y: 2 * (y / (x + y)) ** 2 + fy = lambda x, y: 2 * (x / (x + y)) ** 2 + + cond = cond_v + (cond_s - cond_v) * rho + condx = [ + f(cond[k, j, i], cond[k, j, i + 1]) + for k in range(nz) + for j in range(ny) + for i in range(nx - 1) + ] + condy = [ + f(cond[k, j, i], cond[k, j + 1, i]) + for k in range(nz) + for j in range(ny - 1) + for i in range(nx) + ] + condz = [ + f(cond[k, j, i], cond[k + 1, j, i]) + for k in range(nz - 1) + for j in range(ny) + for i in range(nx) + ] + condz = np.append(condz, [cond_s] * nx * ny) # conductivity at Dirichlet boundary + condx, condy, condz = diags(condx, 0), diags(condy, 0), diags(condz, 0) + + src = src_v + (src_s - src_v) * rho.flatten() + eq = dx @ condx @ gx + dy @ condy @ gy + dz @ condz @ gz + if solver == spsolve: + T = solver(eq, src) + else: + T, info = (solver(eq, src)).reshape(1, -1) + + heat_func = lambda x: npa.sum(x**p) ** (1 / p) / thresh + heat = heat_func(T) + if not need_grad: + return heat - 1 + + dgdx = grad(heat_func)(T) + if solver == spsolve: + aT = (solver(eq, dgdx)).reshape(1, -1) + else: + aT, sinfo = (solver(eq, dgdx)).reshape(1, -1) + + # conductivity matrix derivative w.r.t 1st and 2nd argument of each entries (e.g. fx and fy) + dcondx_r = [ + k * (nx - 1) * ny + j * (nx - 1) + i + for k in range(nz) + for j in range(ny) + for i in range(nx - 1) + ] + dcondx_c1 = [ + k * nx * ny + j * nx + i + for k in range(nz) + for j in range(ny) + for i in range(nx - 1) + ] + dcondx_d1 = [ + fx(cond[k, j, i], cond[k, j, i + 1]) + for k in range(nz) + for j in range(ny) + for i in range(nx - 1) + ] + dcondx1 = csc_matrix( + (dcondx_d1, (dcondx_r, dcondx_c1)), shape=(nz * ny * (nx - 1), nx * ny * nz) + ) + + dcondx_c2 = [ + k * nx * ny + j * nx + i + 1 + for k in range(nz) + for j in range(ny) + for i in range(nx - 1) + ] + dcondx_d2 = [ + fy(cond[k, j, i], cond[k, j, i + 1]) + for k in range(nz) + for j in range(ny) + for i in range(nx - 1) + ] + dcondx2 = csc_matrix( + (dcondx_d2, (dcondx_r, dcondx_c2)), shape=(nz * ny * (nx - 1), nx * ny * nz) + ) + + dcondy_r = [ + k * nx * (ny - 1) + j * nx + i + for k in range(nz) + for j in range(ny - 1) + for i in range(nx) + ] + dcondy_c1 = [ + k * nx * ny + j * nx + i + for k in range(nz) + for j in range(ny - 1) + for i in range(nx) + ] + dcondy_d1 = [ + fx(cond[k, j, i], cond[k, j + 1, i]) + for k in range(nz) + for j in range(ny - 1) + for i in range(nx) + ] + dcondy1 = csc_matrix( + (dcondy_d1, (dcondy_r, dcondy_c1)), shape=(nz * (ny - 1) * nx, nx * ny * nz) + ) + + dcondy_c2 = [ + k * nx * ny + (j + 1) * nx + i + for k in range(nz) + for j in range(ny - 1) + for i in range(nx) + ] + dcondy_d2 = [ + fy(cond[k, j, i], cond[k, j + 1, i]) + for k in range(nz) + for j in range(ny - 1) + for i in range(nx) + ] + dcondy2 = csc_matrix( + (dcondy_d2, (dcondy_r, dcondy_c2)), shape=(nz * (ny - 1) * nx, nx * ny * nz) + ) + + dcondz_r = [ + k * nx * ny + j * nx + i + for k in range(nz - 1) + for j in range(ny) + for i in range(nx) + ] + dcondz_c1 = [ + k * nx * ny + j * nx + i + for k in range(nz - 1) + for j in range(ny) + for i in range(nx) + ] + dcondz_d1 = [ + fx(cond[k, j, i], cond[k + 1, j, i]) + for k in range(nz - 1) + for j in range(ny) + for i in range(nx) + ] + dcondz1 = csc_matrix( + (dcondz_d1, (dcondz_r, dcondz_c1)), shape=(nx * ny * nz, nx * ny * nz) + ) + + dcondz_c2 = [ + (k + 1) * nx * ny + j * nx + i + for k in range(nz - 1) + for j in range(ny) + for i in range(nx) + ] + dcondz_d2 = [ + fy(cond[k, j, i], cond[k + 1, j, i]) + for k in range(nz - 1) + for j in range(ny) + for i in range(nx) + ] + dcondz2 = csc_matrix( + (dcondz_d2, (dcondz_r, dcondz_c2)), shape=(nx * ny * nz, nx * ny * nz) + ) + + dcondx, dcondy, dcondz = dcondx1 + dcondx2, dcondy1 + dcondy2, dcondz1 + dcondz2 + dAdp_x = ( + dz @ dcondz.multiply(gz @ T.reshape(-1, 1)) + + dy @ dcondy.multiply(gy @ T.reshape(-1, 1)) + + dx @ dcondx.multiply(gx @ T.reshape(-1, 1)) + ) + + gradient = aT * (src_s - src_v) - (cond_s - cond_v) * (aT @ dAdp_x) + return T, heat - 1, gradient + + +def cc_fd( + rho, + nx, + ny, + nz, + cond_v=1, + cond_s=1e6, + src_v=0, + src_s=1, + solver=spsolve, + thresh=None, + p=4, + num_grad=6, + db=1e-6, +): + n = nx * ny * nz + fdidx = np.random.choice(n, num_grad) + fdgrad = [] + for k in fdidx: + rho[k] += db + fp = constraint_connectivity( + rho.reshape((nz, ny, nx)), + nx, + ny, + nz, + cond_v, + cond_s, + src_v, + src_s, + solver, + thresh, + p, + need_grad=False, ) - dAy[:, : -self.nx * self.ny] = ( - (1 - self.zeta) * self.k0 * lil_matrix(self.dy * drhoy.multiply(gyT)) - ) # element-wise product - - Tz = np.pad(self.T, (0, self.nx * self.ny), "constant", constant_values=1) - gzTz = np.reshape(self.gz * Tz, (-1, 1)) - drhoz = diags([0.5, 0.5], [0, -1], shape=[self.nz, self.nz], format="lil") - drhoz[0, 0] = 0 - drhoz = kron(drhoz, eye(self.nx * self.ny)) - dAz = (1 - self.zeta) * self.k0 * self.dz * drhoz.multiply(gzTz) - d_damping = self.k0 * self.alpha**2 * diags(-self.T, shape=(self.m, self.n)) - - self.grad = dg_dp + self.adjoint().reshape(1, -1) * csr_matrix( - dAz + dAx + dAy + d_damping + rho[k] -= 2 * db + fm = constraint_connectivity( + rho.reshape((nz, ny, nx)), + nx, + ny, + nz, + cond_v, + cond_s, + src_v, + src_s, + solver, + thresh, + p, + need_grad=False, ) - return self.grad[0] - - def __call__(self, rho_vector): - Td = self.forward(rho_vector) - grad = self.calculate_grad() - return Td - self.thresh, grad - - def calculate_fd_grad(self, rho_vector, num, db=1e-4): - fdidx = np.random.choice(self.n, num) - fdgrad = [] - for k in fdidx: - rho_vector[k] += db - fp = self.forward(rho_vector) - rho_vector[k] -= 2 * db - fm = self.forward(rho_vector) - fdgrad.append((fp - fm) / (2 * db)) - rho_vector[k] += db - return fdidx, fdgrad - - def calculate_all_fd_grad(self, rho_vector, db=1e-4): - fdgrad = [] - for k in range(self.n): - rho_vector[k] += db - fp = self.forward(rho_vector) - rho_vector[k] -= 2 * db - fm = self.forward(rho_vector) - fdgrad.append((fp - fm) / (2 * db)) - rho_vector[k] += db - return range(self.n), np.array(fdgrad) + fdgrad.append((fp - fm) / (2 * db)) + rho[k] += db + return fdidx, fdgrad diff --git a/python/examples/adjoint_optimization/ConnectivityConstraint.ipynb b/python/examples/adjoint_optimization/ConnectivityConstraint.ipynb deleted file mode 100644 index 9978da26d..000000000 --- a/python/examples/adjoint_optimization/ConnectivityConstraint.ipynb +++ /dev/null @@ -1,276 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Connectivity Constraint in Meep adjoint\n", - "\n", - "For manufacturability, connectivity constraint is often desired. This is a simple tutorial example of the connectivity constraint in Meep adjoint. This feature is rather independent and may be used alone, when applicable." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using MPI version 3.1, 1 processes\n" - ] - } - ], - "source": [ - "import meep.adjoint as mpa\n", - "import numpy as np\n", - "from scipy.sparse.linalg import cg, spsolve\n", - "from matplotlib import pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The underlying idea (based on Li, Q. et al. https://doi.org/10.1007/s00158-016-1459-5) is briefly summerized below:\n", - "\n", - "Consider the heat equation, and regard the material as heat conductive and void as heat insulative. Solving the heat equation, we should expect the heat gets diffused into the connected component but not the disconnected component.\n", - "In practice, 3D-printed structure is often mounted on some substrate. This means the optimized structure should be connected to one side. For our heat equation, we impose Dirichlet boundary condition ($T=T_0$) on one side, (and Neumann on other sides,) the resulting temperature should be almost $T_0$ for all structures connected to that side. The p-norm weighted by material density $(\\frac{\\sum (T-T_0)^p \\rho}{\\sum \\rho})^\\frac1{p}$ measures how well the structure is connected. \n", - "\n", - "Additionally, damping terms are added so the heat can quickly decay away outside the material. The equation solved is thus $(-\\nabla \\cdot(k \\nabla) + \\alpha^2 (1-\\rho)k + \\alpha_0^2)T=0.$, where the conductivity $k=\\rho k_0$ for material density $\\rho \\in [0,1]$\n", - "\n", - "The solver assumes the side with Dirichlet boundary condition is the last slice ``rho[-nx*ny:]``. For 2D, as in the following example below, set ``ny=1``. In Meep, if we want the structure connect to the bottom, we can use ``rot90`` before we pass in. " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "foward value 0.6369810999723368\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAL6klEQVR4nO3dX4ilhXnH8e+v69bgP9gl7TJai22wAQl10w6mECkWm2i9UW+kexE2NDBeRDA0FxVvIpSAlMT2pgRWlGzBWELU6kWoMSLdBkrIrqy6um02hA11XXcRA64UbNSnF/PamSw7O3P+zcw+8/3AMue857x7Hl9evp59z3veSVUhSerlNzZ6AEnS9Bl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIZWjXuSq5O8kOS1JK8muXdY/kCSE0kOD39um/24kqS1yGrnuSeZA+aq6sUklwOHgDuAu4B3q+obM59SkjSSi1Z7QlWdBE4Ot88kOQpcNevBJEnjW/Wd+689ObkGOAB8Cvhr4IvAO8BB4KtV9ctzrLMALABsY9sfX8IVEw8taWP8wR/+z8jr/PTlS2YwydZyhl++VVW/Nco6a457ksuAfwO+XlVPJtkFvAUU8LcsHrr5q/P9HVdkZ30mN48yn6RN5Nk3Xhp5nVuuvH4Gk2wtP6zvHaqq+VHWWdPZMkm2A08Aj1XVkwBVdaqqPqiqD4GHgRtGHViSNBtrOVsmwCPA0ap6aNnyuWVPuxM4Mv3xJEnjWPUDVeCzwBeAV5IcHpbdD+xJspvFwzLHgbtnMJ8kaQxrOVvmR0DO8dD3pz+OJGka/IaqJDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDa0a9yRXJ3khyWtJXk1y77B8Z5Lnkhwbfu6Y/biSpLVYyzv394GvVtV1wJ8AX05yHXAf8HxVXQs8P9yXJG0Cq8a9qk5W1YvD7TPAUeAq4HZg//C0/cAdM5pRkjSii0Z5cpJrgE8DPwZ2VdXJ4aE3gV0rrLMALAB8jEvGHlSStHZr/kA1yWXAE8BXquqd5Y9VVQF1rvWqal9VzVfV/HYunmhYSdLarCnuSbazGPbHqurJYfGpJHPD43PA6dmMKEka1VrOlgnwCHC0qh5a9tAzwN7h9l7g6emPJ0kax1qOuX8W+ALwSpLDw7L7gQeB7yb5EvAL4K6ZTChJGtmqca+qHwFZ4eGbpzuOJGka/IaqJDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWpopN/EJJ3Ps2+8NPI6t1x5/QwmkeQ7d0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakhz3PX1HjOurR5+M5dkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpoVXjnuTRJKeTHFm27IEkJ5IcHv7cNtsxJUmjWMs7928Dt55j+d9X1e7hz/enO5YkaRKrxr2qDgBvr8MskqQpmeSY+z1JXh4O2+xY6UlJFpIcTHLwV7w3wctJktZq3Lh/C/gEsBs4CXxzpSdW1b6qmq+q+e1cPObLSZJGMVbcq+pUVX1QVR8CDwM3THcsSdIkxop7krlld+8Ejqz0XEnS+lv1F2QneRy4Cfh4kteBrwE3JdkNFHAcuHt2I0qSRrVq3KtqzzkWPzKDWSRJU+I3VCWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWpo1bgneTTJ6SRHli3bmeS5JMeGnztmO6YkaRRreef+beDWs5bdBzxfVdcCzw/3JUmbxKpxr6oDwNtnLb4d2D/c3g/cMd2xJEmTuGjM9XZV1cnh9pvArpWemGQBWAD4GJeM+XJab8++8dLI69xy5fUzmETSOCb+QLWqCqjzPL6vquaran47F0/6cpKkNRg37qeSzAEMP09PbyRJ0qTGjfszwN7h9l7g6emMI0mahrWcCvk48B/AJ5O8nuRLwIPA55IcA/58uC9J2iRW/UC1qvas8NDNU55FkjQlfkNVkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDU07m9i0gTG+S1HF4L1/O/ytz4t2ez7k7/Va2P4zl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyPPcN8CFcA6v5yZfONZzu7tfXDh85y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktTQRFeFTHIcOAN8ALxfVfPTGEqSNJlpXPL3z6rqrSn8PZKkKfGwjCQ1NGncC/hBkkNJFs71hCQLSQ4mOfgr3pvw5SRJazHpYZkbq+pEkt8Gnkvyn1V1YPkTqmofsA/giuysCV9P0gbytypdOCZ6515VJ4afp4GngBumMZQkaTJjxz3JpUku/+g28HngyLQGkySNb5LDMruAp5J89Pd8p6r+dSpTSZImMnbcq+rngAfgJGkT8lRISWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGpoo7kluTfJfSX6W5L5pDSVJmszYcU+yDfhH4C+A64A9Sa6b1mCSpPFN8s79BuBnVfXzqvpf4J+B26czliRpEhdNsO5VwH8vu/868Jmzn5RkAVgY7r73w/rekQles5OPA29t9BAr2TY3zlrHxn25Tb0t1pnbYonbYsknR11hkrivSVXtA/YBJDlYVfOzfs0LgdtiidtiidtiidtiSZKDo64zyWGZE8DVy+7/zrBMkrTBJon7T4Brk/xekt8E/hJ4ZjpjSZImMfZhmap6P8k9wLPANuDRqnp1ldX2jft6Dbktlrgtlrgtlrgtloy8LVJVsxhEkrSB/IaqJDVk3CWpoXWJu5cp+HVJjid5JcnhcU5xupAleTTJ6SRHli3bmeS5JMeGnzs2csb1ssK2eCDJiWHfOJzkto2ccT0kuTrJC0leS/JqknuH5VtuvzjPthh5v5j5MffhMgU/BT7H4hedfgLsqarXZvrCm1iS48B8VW25L2gk+VPgXeCfqupTw7K/A96uqgeH//nvqKq/2cg518MK2+IB4N2q+sZGzraekswBc1X1YpLLgUPAHcAX2WL7xXm2xV2MuF+sxzt3L1Og/1dVB4C3z1p8O7B/uL2fxZ25vRW2xZZTVSer6sXh9hngKIvfgN9y+8V5tsXI1iPu57pMwVjDNlLAD5IcGi7PsNXtqqqTw+03gV0bOcwmcE+Sl4fDNu0PRSyX5Brg08CP2eL7xVnbAkbcL/xAdWPcWFV/xOIVNb88/PNcQC0eJ9zK5+d+C/gEsBs4CXxzQ6dZR0kuA54AvlJV7yx/bKvtF+fYFiPvF+sRdy9TcJaqOjH8PA08xeKhq63s1HCs8aNjjqc3eJ4NU1WnquqDqvoQeJgtsm8k2c5izB6rqieHxVtyvzjXthhnv1iPuHuZgmWSXDp8UEKSS4HPA1v9SpnPAHuH23uBpzdwlg31UcwGd7IF9o0kAR4BjlbVQ8se2nL7xUrbYpz9Yl2+oTqctvMPLF2m4Oszf9FNKsnvs/huHRYv//CdrbQ9kjwO3MTi5VxPAV8D/gX4LvC7wC+Au6qq/QeNK2yLm1j8p3cBx4G7lx13binJjcC/A68AHw6L72fxWPOW2i/Osy32MOJ+4eUHJKkhP1CVpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGvo/PL0GIHoV1ZcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "nz, ny, nx = 25, 1, 25\n", - "c = mpa.ConnectivityConstraint(nx, ny, nz, sp_solver=cg)\n", - "\n", - "r = np.zeros((nz, ny, nx)) + 0.0001\n", - "r[:10, 0, 8] = 0.999\n", - "r[7, 0, 5:20] = 0.999\n", - "r[5:, 0, 18] = 0.999\n", - "r[7, 0, 11:16] = 0.0001\n", - "r[17:18, 0, 9:10] = 0.999\n", - "\n", - "r = r.flatten() # flatten the structure before pass in\n", - "f = c.forward(r)\n", - "ag = c.calculate_grad()\n", - "\n", - "print(\"foward value\", f)\n", - "\n", - "plt.figure()\n", - "plt.pcolormesh(r.reshape((nz, nx)))\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above structure has the following temperature distribution. As expected, component connected to the top (where Dirichlet BC is enforeced) has high value of temperature." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAD6CAYAAACS9e2aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABWNklEQVR4nO29fZQs513f+fnVW3fP3HvnXknWSyxhK1klxAHWZBXDHiAxL86KTRbDJuvIPrB4l6zYXZRNQtgTQ3IMcQ4bkxwCnBOHg2IcDAkYxwlEuxGRWQNrSICVSBxA8hoUY2Mpkq8k675Ov1XVb/+ol36quqq6uru6p3vm+ZwzZ6arq6u6Z6a/9e3v83t+j6gqFovFYtkdnJN+AhaLxWIpYoXZYrFYdgwrzBaLxbJjWGG2WCyWHcMKs8VisewYVpgtFotlx7DCbLFYLC0QkQdE5BMi8oyIvKPi/teIyEdE5DdF5JdE5G7jvu8Tkd9Ov/7CwnNts45ZvL5K7/zWzmexWPYXPX7pJVV91TrHcI7uUcJRm3M9rqoP1N0vIi7wO8CbgGeBJ4C3qurTxj7/DPi/VPX9IvJVwP+gqt8kIn8G+CvA1wI94JeAr1bVa3Xn81q8ts5wBhc5+OJv3OYpLZZWhONh633jcLLBZ7IZHC9ova/XG2zwmbTnxi9//6fXPkg4wv/8r1+42+Tfvfe2Bbu8AXhGVT8JICIfAN4MPG3s8zrg29OffxH4WWP7R1U1BEIR+U3gAeCDdSfbqjC7fo8Lr/7D2zzlqSGatBcOS0K0pIBGNeIcTYqOKw4nhOPh3gi04wUEh0dz292gX7m/u6Iwu0uIfxtudHq0tXk18Bnj9rPAl5T2+Q/Afwv8EPANwHkRuTXd/t0i8v3AAfCVFAV9ju06Zs/n3G23b/OUlhMgnEZbPV8Uhu33bXDGptAWLoSpqGVCH42HOF7A5ObVnRfn4PAoEebzl/JtZQF1g6IQL3LXywq3621VZkpI208Lt4nIk8btR1T1kSVP9h3APxCRtwMfBZ4DIlX9sIj8CeDfAi8Cvwo0vkm265g9h/O37MbHJMv2icK40+OF08XHm7tInE/+/+KK55LtG4UhfibGhpD7pOJ9cMTk+CrATotzcHiEf3ABtzcgOEhejylSpsCa4un57tyxHK+6TqBq3zo8f6drDV5S1fsb7n8OuMe4fXe6LUdV/xOJY0ZEzgF/TlWvpPd9L/C96X0/SZJX17Jdx+w6nL9khdkCcbSeSC8S5aqLQJWTN/fLjpntF4cxDHpzjzUduhv0mR5fY3Lz6hLPfrM4XoDXG+AfXEjF+Qi3N6gV30x0s21lAXUrRLlKkKv2q2NbIi2O01Vm/gRwn4jcSyLIDwJvK5xL5Dbgc6oaA98JvC/d7gIXVfVlEfki4IuADzedbKvC3A8c7vsDF7Z5yjPDpGM3ui2Gk/YxRMa44bUOJ/PiOyltK18UMkGOwphwGtEbeLlgZ/eZjjEOXSB11IYD3YXcOcuTg/OXcL0A/+CI4PA8nu/OCXDyc7LN9Zx8uymwZQF13OLtIKh2zIOa7VX0lhD0k0JVQxF5GHgccIH3qepTIvIu4ElVfRR4I/B3RERJooxvSx/uA78sIgDXgG9MBwJr2aowB57Da2492OYpLSuwbZGvEtM66kR5WJNrZ6+lfAEwj5OdfzKJctEOpzFRGNMbUCvWrncrk5vX8+OcdO5s5snBQfrz4XmCgY/nuwURBgpCnN3nuE4utmVxNQV0EMykI2gQ1sESUcdGBFpaZ8wLUdXHgMdK295p/Pwh4EMVjxuRVGa0ZrvC7Dp83iUrzKeBcdjtAN80bldPXyXAlS55TniTSKIgyMaxJmHMcBLm9w8nUS7UvYFXcNWulzwucaBJXb4bDE40dy7nyf7hEa7nEQx8+gc+vYGfPM9clItCnIlwz3Ny0TUF1xTYTECrXHGVSC/jnpcR8tPMVoXZdx3uOt/b5iktW2S0htOetsicx1HMpVRgZo9TOCztZ1w0MsE3RTh3yCXxHod+vp8p1MNJBIOZoy6LG5w/sdy5Lk/uDXqpU3boDXx6g+StXifEgefkophsmwlkUCHE2b6+I3PPqefNi6vvzu9XR8/d/Whj02xXmB3hjnPd1jpa5olaus9Ns6xQN2XHMO+qq44/jWLOpQIyTsV+GinnUhc4DiMu9Lw5wQ48h0kY05s4+XPJt3mJQA8Cl+EkYsQU8BkPp3i+m1d4RF6A6wV5OZ3jBRt3zl5vgOMFyeBeMMgH+Zw0nnC95MsU5JnjnQmy6YIDQ5irBDgTXlNsq8TUL23rt4wqqsR+VUSc2nrtXWa7VRki9O3VcPNs+NNg1HIaf90bsS62ODQcWd3FxRTjc4E7J+bTeHZOP8yEOfk+jmJ812MaKdnntkwEBr7L527WiagHzBzxZBJBGm14vkM4dcBw5G5vMDcpZZsUB/eSbNkUZTOqyEQ5E+KjA5+B7zYKcSbCmfBW/Z3L4rooP24r2meFLQsznAvsH2AXaJvpVtPO0dSJa6/iY+2c+U21pXwR6HtO4bkfBu7ceTLxzsQhE+smoSaMuOUwYDiNKjPrwAvS6CMkCFziKCYK3XxA0PNdot6AOJwsPeNwXdygPzdpxPPdgls2RTmPJgxRzlzywHfzTxeLhDj7/ZZFtyyybo0D7tIZ1yEiK89kPEm2O8HECvPSTKPNxBJV4rgsqzy1cMEFYf6CkTxPU3x7rhSEPHKKj8mEIBPtNkLtu9Lyd+0xDmMmkygXPs93d6Jc0fGCQoyREZREuZwlZ6J8oefR81x8V1qJcbatLLxlwXWleLuNOa4T87PCVoVZAJ+T/wfeJ7Y9SB1Ldyesjjzm33CmIGYXjDqNNIV9JuJSEG5TCCJH8zd533MYhTE9kgzZD1ymsdL3HPww5sYk5FzgLXRyPc+Zc8272MokizEGgTuXJ2fRReA53HIY4DtCz3M5F7j4rlPrik0xzu5rEl5TYBf9Xr1NiLE4nffw2AbbncSuEc74+uL9LOvhrP5nXfbzjLp+7X1VEq8Vzy27+NRdFIoCP3O2PVcKAl4l2lE8E46ySENF7JHGHBeoz50nQeKaR8Npvs3xHFzPywcA3aAPJzAbMBHjYozR85w5UTajC98RzvU8eq6D7zqcNyo2oF6MMwFuEl9TbOs+pC1TsXFW2K4wxzEyvrnVU1rWpEF4oTlt1gqnMre/IdTZRaEs9i5FQffdmYibom2WOGeCEMZaK9LTWOcy6usTOBckYnFjHFbmzoGXiJ3jOsU4wxDqbZNVZGQUB/28xjw5iy7O97zUOSeOORPcOjHOtteJrym4ZVftqJnjz388knj5GaFViMhck6Z9YLtRhkY4I+uYTxR3yaiihdaoW/1RUabFz/dVbjnHEOPsLWwKe/62To8h6f6maLtG/Wwm2NNoXqSjWPEQXBEiVXxHcB3JneE0dmAcQs+rzJ3HYcwk8ApxxngY5gOA03SiidcbMNnCQKApyGa+nA36ZReSujz5XOAlcY4jHPW9ypjCc+bFONPdOgE2xVei0Pi54Z+qI0Hed7brmKMIbry81VOeNuQkazJr3LNQHbCWBXvOLZsXien8YzJhnxN010eYCbek9zvM3HYm2K7nzol0FnkkIp0eUoQRMUd9bxZv1OTOeTQQuHkfjrxsjrSN5pZijEK3OC+7QCUuPh/0891clOvy5HOBm7vkrKQ1E2NIXHNZjDMRzgTYdLkF8TW3112omsR6HcTpbEr2NtmqMGscEd+0jnktSr+/bQq1+M2xxtz+Tc/N9as70rqlja6LRLM3s7oBxCHqeLM3fyrG6gUzcchcNCGO4yXRh5t0k5lGs8FF35E06lB8neXP4zBOR7E8bkxCwGWQCvokjBmHcT4IONmBGtxMfMod4go1y4Gbi7LvSi7KfvppIXPEywhy9vvO/xZ1ImwIb11MYf6dzzpbHvyL0RMsvD+NdPX7bCPwTeeqerxOiy6oKOyzY5mPlWhadOapTmdOWqJhLtbZNq14rHqpAGRu2gGywUWXRJnLZV0x4CSleT3PgTBmRFLHO42ixDX7LkNv/oqSTdN2Pa9N+rNRMnEelAbx8ll8ZjlcmilnP7sijZGFK1JwyBJNF4px0UlXiG+0uYUVxHFsHfNC4oj4Zu36g5aOWcZN67S9WxF//qNhlWiXz2/uY96XCfhMuEdz+xREl/Yird4sQnGcZNDQFZmJM+QCHTlKFJHnzeMwTia0pHXO4DI1utQNAo8rx1M836G8MIrbGzA93u7/elWP5HKfi9ksvllJXOaWs8G9zCVDMpiXZciZKBdcchy2F+OSANc65E3FGnvEdqOMKLbCvASy5pVew9X+wcVrjizqnPOcEJfE3hT0KpHOtuW3KwRbgn61SJOcqyzSSRZdFOdkxyTamEaKK8mEa9eROdc8nUT4rpP33fAdKfWbcPOyuZOqzKiq0zX7JmeinNck17hlSH4HZVEuRxemS5Zw0kqMCyJcI7z20/SMLS/GpbCiWJxFVhXWRhaILoC2WDG66qJRfr5lga93zJM50S7cb9zW6TQV6pJIR0bcgZFJMy/OYEQb+dTv9LujEEvBNeM5TCMHiBkb8ajZ4tLzk8qMk8ac8Vfon+y7ebYMNLplKIpyVXRRJchtxLhKfMuRV9d0teagiDxAstCqC7xXVd9duv/zgPcDF9N93qGqj4mID7wX+OMkmvvjqvp3ms61XcccRkyu2sG/rnH7S4w6j8fLHbtX3aa19qJhiLEp8GUhNx8vnl/hllMHnAp2WaxNJH35ufCmIp0JdEGca3JnV5LM2U2rNnxHKl1zz0sGAQeBy5XUHZdX9TiJKoDi+n1FQQ7SAb6MbJp1nVtuK8rJtvmYYratKMZlAa5zyLvonNPlod4DvIlkhewnRORRVTVXu/6bwAdV9YdF5HUkTfVfC/x3QE9Vv1BEDoCnReSnVPVTdefbrjCrEk2sY+6adX6nbtDsoKNRffZceUEoCX8m7AUhLzvp8TAX7my/zG0X3XLirLNt+feSi4ZUiAmQaIi4LhoHiVBU5M6QilWUCnKFazYHATPMdpmzl+ayC7UF2cQSk2zQr1yJYbrlsihX5smmKJfdcYUzzgS5sK3SOXf/mxORpRaMbeANwDOq+sn0uB8A3gyYwqwkk0YhWXvsPxnbD0XEAwbAhGSJqVq2XC4XM7l+vM1Tnmlcf/Gft0l4C8eqEOGqC0JZ6LPjFx5viPeccGeCXBLrslCXRbqMBMYAIDXuOd1XHQ9XhCmaOEYnkXVfDdccaz4I6DtSuVKH5zsn2jPDSeuXTbKJJeagX7a9XB7nOTInynMDfCVRTr7P/g/K7ji/nW+f/3+rFOntR563iciTxu1HVPUR4/argc8Yt58FvqR0jO8BPiwif4lk+YavSbd/iETEnwcOgL+qqp9rejJbH/ybXrPCvApOsPyfqq3oZjRFItG0Oj8ti3/5nNkxTRE3xXtOuMfjolgbQg1JJGIKdUadi5bAcM8N4uw4Jdcca146BombzETtRvqYvGPbjtQyZ2SNi8qYg355/wujPC4ri6sU5VSQgTlRbivGbQS4zfjGMogUF9Jt4CVVvX/N070V+DFV/X4R+S+BnxCRLyBx2xHwB4BLJAuz/t+Z+65iy45ZCUfLZZyWlCV+b15/teW74ooVqxddECodsXn/NKwU78aLgHm/IdRQ1VVhMW3F2XV7BdecZc3l0rmel8yku3q827FcoVGRMehnZsuZZs0qMQSJlhPltoLcSoR3tzjgOeAe4/bd6TaTbwEeAFDVXxWRPnAb8DbgX6vqFLgsIv8GuB/YDWFGlbjGeVm6wfG9zi5+Xr9XKdbL4PaDWrdd+5jALwh+lEYfbq+XvHE9v9ZZNcUb+T7RvDjj+jiaDPJFYSL/njMb08oGAfcZc6mnqo5wviul5kJFuhDlNmIcLTlA3Uh3GfMTwH0ici+JID9IIrgmvw98NfBjIvJHgT7wYrr9q0gc9CHwpcAPNp1sy4N/MeGSH68ty9HVH3QZgV9WwMti7fpeUYjT2MMU6MLjIRdnM9ponpk4c81VjZwkms6aIQl5nAElEXMdqueS7wdmdYbZcMjsCtdYfVHB0qJc4YrLYrxsDLdpVDUUkYeBx0n+Bd+nqk+JyLuAJ1X1UeCvAf9IRP4qyXX/7aqqIvIe4B+LyFMk/4b/WFV/s+l8248yTrA14mnHG/idXfja/mM0CXiVYDuBt9KbLhPpzEFn0qowJ87Z4GCZxkgjyEQ5GQSE2YST7LbvCCMSZ2k2BhoELiN/dzLmRZhLP7lloW7Kiircsk5GKwlylSvehBiLFGu710FVHyMpgTO3vdP4+Wngyyoed4OkZK41W44yIJraFUw2RzcXvWUEvukfqMpDN+1vOuk6F13YP402Cm30DXFeijhMctTUTXt5c6OEfLJJ0/P3nKQyojfYyqoZTtqQ3w2SlbGzJvlZc3yzhrlnTMGGonPOqjEgrfOuKYvrQpRNQa4SYltOm7BQmEXkHuDHgTtIrqePqOoPicgtwE+TFFB/CniLqr7SdKzEMduMeRN4A6+Ti57rO60/1SwS8PI/V5W7XiXHLmTQLXJnkzrXTCqkVTlzVja3LLvYbtKsuzZn+kG5eX17GkW5JMhlMa4S4i6ds4jMlRDuA20ccwj8NVX9dyJyHvgNEfl54O3AR1T13SLyDuAdwF9vOpAqRNP9zefOBst8iKoX8CrRXiTU2f1m3FHnostU5c5lmtqWSjgBx6vNmYG8nvnGErpRFud4zcb5XYh9eaHTcr68jFvW6aS1S87+dm3EeNkB49PGwnehqj5PUhiNql4XkY+TFFu/GXhjutv7gV9ikTBbx7wREre8/gXP9d3Wf5/FDr345lsk1KZIt7k0FAYJa3LnMnlTpCrXnDZFkjjMy+bycxn1zJDUAy9aWLSOk3LRfmnaePk1ZWVyy9JGlKsEuTLGOONibLJUxiwirwW+GPh14I5UtAFeIIk6mlEl2vOSI8tiqkW7WajNf8Ts7WnGHJmLXlR+V5U7V5GLs5sKeNYxzegFbdYzV5EtcLqrzM36MyaWZJj5MpD8DpZwy9AuushE2RTk8t9xc4N/u/s3qqO1MIvIOeCfA39FVa+JUWqTloRU/veKyEPAQwB3+AHhyF4VV8XrV/+51r3YuekssTZu2Rskz6HOoVe57rJQl3NsU6S9fkA8DYsOupRDZ+KcTVyJJtPK3LkwKFjRQzp5cIQwySMMiaY4jlfImTPqBgDL/TJ2gXKfDBNzYkmGo1H9WnwNEcYqorxIkNetnT8NtBLmtG3dPwf+qar+i3TzZ0XkLlV9XkTuAi5XPTadb/4IwB85OFxl4pYlZZ2LWp2oQ7Owu6WpvVWiWziWIdiuXxT8majH6f1Oev8Ub5A41XA0ycUZZhGHOZux7JyzWCOb6h2VZgtCsUdDXdYs4SQvmytTzpvLlDvMnSRBxXTsKqrimKwnRsEtL6Bq0LWNKG9FkE/r4J8k1vhHgY+r6t837noU+Gbg3en3f7noWKoQTWy5XNe4weJ/vDaiXiXeVaJtinWVyy676jYCnTnozD176ZTsOfdMMdYAan+uw8yayXo4x2GeM5tk3ebMxTfKee0+41ZE5XVr8jVSVQ5XI8pVkUVZlM9664Y2jvnLgG8CfktEPpZu+y4SQf6giHwL8GngLRt5hpaFrHKxqxLzJvE2Rbss1nWuehmBLrvnKnHOiCdh3sOjKtIA8sHAfKmpul7O0SSdDTh/X7aySVt2Icusc4dmj4y5xyyaWGJQjjHalMRBvShvWpC7nGCyTdpUZfwKxcUfTL56qbPFajPmLdEUXUCzmLcR7TZCvYxAl91zU+6cxRrLuOa61VPmSCealCszymQDavuAObhXLpXLyCaW5NQM+i2icbDP+HmRIJ/1njpbb5Rvy+VWp5znNrHMBbAs4nWibQp2G6FeJNAwGywsu+e63DkXZ0r1zuZMQXMgsGIprfJqKZA6Z8fLJ5rU0fMcrqevr6q15km65rbOsFwqVyCatsqV5x7WIsKAkxBk2an8vy1bXvPPsg7rXNSaRL19hFEU7EVCbTppNyhWa5gibVZyZO55kThDu0gjq86oWmA2mbpdKpuroVHMdpimcj5vhddTFWNURRhtcuUmUT7rzc627JhhGtvBvy7xnXZuYJlSuMLjGp3xYqHO9m9y0Zk4Z9vL4pzsV8yd20QaJoU1Blv20fBdIVIaa5l3sVQuo8rRl1nU6rOqL0YVlZNISqKcueVFLrlLUXac9lUqu4R1zHvOOhe6sqg3iXcm2m2FOhPpNgJtzlw0o4263NmDxkgjOY+xYkrNat3lsjmJQ0inZjuOR0Q70W2qGd4W60Yo2VTsYkP8xT1TmiIM8+cqUd6kIO87W/2PioFhZEuZN8WgqvapgTpRr3LhVTEE1At1JtJtBLqYMUetcue6SAMqXHNNnJGXzQ18iKLKyowqyrPnyrjeyQt1eU3CbNZfq6nkUfOEpblqjJbTq9uKsm0NTEtLYNkLhpEu9VXHNI7zryrCYVjrrsNRWBDrctxRFvJMoKuOV3+OemfVNF27doHPFs7wNLFq+mI2LKqjTY3yNp2yiCTLay34anmsB0TkEyLyTNq4rXz/D4jIx9Kv3xGRK+n2rzS2f0xERiLy9U3n2nrGPFmhfaIlIeh48KkszlWO2xTnpuijnE+Ho7Dgnsv5c1U5nxlruKWP5lWuOTlWQ9Yc1Az41U3PXgJ/yU8nu8YyTZgW5cvQnC3DzC0vEuVddcsi4gLvAd5EskL2EyLyaNocHwBV/avG/n+JpK8QqvqLwOvT7bcAzwAfbjrfyX/msrSmq4tancCbQr2qSJdjjqZow4w1ypNUmiKNjKY4Izlu2n2uYnr20o30U/qew42K2ZBB4NLt+s6rU3aAvZpyMVeaJ5eYa/q1oY1bNmkS5a4W1HCkswHaNwDPZCtbi8gHSDpsPl2z/1uB767Y/ueBn1PV46aT2SjjDDKJde6rzKLYoy7qKMcc89FFXLgvu3/ZSCOscGP5OcpNciqWMWozWQJmfZnLTeV3iXVbic5NLoHWA3/RaNK62X1TOdwmRHlJbhORJ42vh0r3vxr4jHH72XTbHCLyGuBe4Bcq7n4Q+KlFT2bLg3/N2aalHcsO8rXBFOcqR5393crnzsS5ykGblRzl6o2m/h5NkUZyf/UgIDT0yginUOrRnMQaaR/maAKRm0wyaTn7b5dbfq5Ey8kl5sDf/CGaB/2S29sTZUekbdXMS6p6f0enfRD4kGqxDjFt9vaFJAu6NmKjjD2k64tbWWybRHoZgS6LM1CZO2fC3SbSKMcZJlVxhomOh5WVGavGGk24QfOElW2xisuvE2ezzWeZtjHGDjrltjwH3GPcvjvdVsWDwLdVbH8L8DOquvDjiB382wG6HtRblqZsuU6k2wq0Kc5QPyhYFufy46qPVT3hBGbOrTwAqOG8EOtklJTMWSoxm+K3YVGMkdE00NdV6waR+dLBFXkCuE9E7iUR5AeBt82fTz4fuAT8asUx3gp8Z5uT2Yx5B6jKfBd9dXl8k6ZcuWn/Mmb+XH6TNZXTJduKeXNVU37zTV1+0xcmOFTkn23z5WXZhb6/XXdSW6Uaw8SMMZpqlU23vIv9dFQ1BB4miSE+DnxQVZ8SkXeJyNcZuz4IfEBVC2+KdPWne4D/p835bJSxp3T5ySM7VtvYomr/qn2ncbyUc64rowMKefOycUY0mnRamWHStgZ2F1i218eiiox8GvaCGGOuRG6LouyIdDYWoKqPAY+Vtr2zdPt7ah77KWoGC6s4gZl/O50jdcZgDztaTWKtHfirGnCs2r+8b5M4t2FO0BvijG2xq9UZZao+wrdtxrTQKVdUukC1SDceZ7dz5RPDOuYNscoFaBfEvMk9ryrOJk3VGua2qoHARZRzZpNoPK7smbGJgb9dpFzLO7cI6zLUzaAs71bR9H4bubKJdFfHvFX27xmfYoZRXPl1EtTVNrfd16RNo6U2q7CUs+ZdnSW2TzQuwlpB1fp+0DwVHmyDomWxwrwH7KM4N5X0NU1AMWmadFL+CNw0ADg7WYMARdOFzXt2EbfXTVle3lmu4XdQ22ukRNtFVZtijLpV2M8KNsrYEzJx3nbcsUxUUd7X3M/MmhfRNAi4DNE0XLwwqzHJBOZbf9avqnaKqXDQq1aytF2RZFOVGE7axGjf2O7gn8LI1jHTX2PwaBjFJyLOMF+F0TZzrqIqa140I7DqscnjiwOATRNNqiaZNGE2y2fHZ62edLneooG/tpNJzrpbBuuYT4Sqi9MyYr0r7rlpkK9qn2Vcc0bThJNWj6/pMmfSdvafWdFQ1xhoV+hyunjT5JI6MV5mtetN1i13OMFkq+zfMz6ljGItfLXhJLLnNlly02Bg08QTk7rsedEAYBtBaJuVtsV843c9waML/DUuIo3LSWUrliw58Gfd8mKsY95RTHFuctMnEW3MP4dm59zGWS8bZyxDNJkuzJo3gRv04ebVrZ93G9Q55bYDfxmbnuW3rxnz7l3eLXMsctEnWVZXR9uZicu8Mcv7LqrMsKzHpqauWxaz3SZGLN/nYV/ZRGOiUaw74Z6XnVRSZpWsuWu6WsnkLFI3669M1YVy2zFGl1Oyt4mNMjbEogvQqsKdOec6gT6pgcFFLCPcZVaZBTh3jIp+GZZ6llm5BJaryJhtaxhj2MFGRtvECvMJURbuZYV6V9zzJumqntlydhH2p7eJyX6/c08Rq7T0bJM9b5NyhUbb6owybaZnz7cSLTq2ZQehLC1pUdGyTKlchq3GKGLtyA6yaJmnMk3ueR+cc1ajvG2H3FXrT0s9dT0ythVVJE2M9i9j3u13rKW1i25yz7tSsbHt9R7LuWfbQStLNXUNjNrStsXnrubLIvKAiHxCRJ4RkXfU7PMWEXlaRJ4SkZ80tn+eiHxYRD6e3v/apnNtfUr2rojEKpyk86xrx1mmzj13PSjYdur1Jigv0mouzgrN7T+7ZFezS7PN5Tbd4qrx0T7EGCLiAu8B3kSyQvYTIvKoqj5t7HMfydJRX6aqr4jI7cYhfhz4XlX9eRE5R9KevhYbZSzBqheVLgW9jSCeZLSxqbK5LiozThue0VnO2bFpx7tSUy6yRt/pIm8AnlHVT6bH/QDwZuBpY5//CXiPqr4CoKqX031fB3iq+vPp9huLTrZbf81TStc9ltvEG7sSbaxbt97UFnSX2MfZZWUkmiDRpHJiSe3q2C0EeG7a/G6Wyd0mIk8aXw+V7n818Bnj9rPMLxX1h4E/LCL/RkR+TUQeMLZfEZF/ISL/XkT+XurAa7GO+YQwxXFVB7uOey6L8yrPYdmlqBbdB91PzZ5r/RlOoaMexvuG7wiek3x3JWnKJFEIcVjZ6vM04NC64dRLqnr/mqfzgPuANwJ3Ax8VkS9Mt38F8MXA7wM/Dbwd+NGmA1lOmHVEuk32vGhSSvk5mGwrV2/bPa68X9PCrG3IlpfSyQiCw5WPU4dXcREIVxxEqzrWLrDsOn+Fx+5BvpzyHMkq1xl3p9tMngV+XVWnwO+JyO+QCPWzwMeMGORngS/FCvP+sKpItxXoZXtBLxo0bOPatzlQGE9DHH+1f2uJJijri5+3YArwrgpsHXU9M6oEeZUa5k0isl53PYMngPtE5F4SQX4QeFtpn58F3gr8YxG5jSTC+CRwBbgoIq9S1ReBrwKebDqZzZh3mFUy6TbZ86rPZRO0WQ9wm0hk16briqoa5h3NlxeiqiHwMPA48HHgg6r6lIi8S0S+Lt3tceBlEXka+EXgf1fVl1U1Ar4D+IiI/BbJhMR/1HS+hdZCRN4H/Fngsqp+Qbrte0hGIF9Md/suVX1suZdqWYZlqikWuec20cYyLNvUaNW+GbYyY3fIejHvOiJCv6OKlVTjHitte6fxswLfnn6VH/vzwBe1PVebZ/xjwAMV239AVV+ffllR3gKbcM/LOOiTqkGvq8xo67CWzkBP6UDYKjStXrIMVZNLmvLlbCHes8pCx6yqH100S6UtyvrlU7vONrLUZSaLbCp7rjpP0zlWyZmXrcwor/1XR3ndv/KCrEBSqXCK6Mo11rGrvUnOYhOjh0XkN0XkfSJyqW4nEXkoqw0ccvqvgmYzoqqvLjlJ99yGbU/B3ha9HZvMsW3WqcKoY5fz5ZNg1f+wHwb+EPB64Hng++t2VNVHVPV+Vb1/gM0HuxbpZeKNtj03Fp1vneO3YV8mlew6JzXpZVdm/QE4klxIF33tGis9I1X9rKpGqhqTjC6+odundTboWqC7omvnXEWVm17GNW2j/lVOWZyxLCe1tNRZz5dhRWEWkbuMm98A/HY3T+ds0pWLbiPOXVwI9rkRlWW7VK1cAns1seREaFMu91MkUwxvE5Fnge8G3igirycZz/sU8K2be4pni7Zd5OroqknRqgOCTYN8dfftwhqApwVnx3tvb5suy+W2SZuqjLdWbK6dSmjphnUFetGxT1sD/nLrz20R7OGbfh3W6WldF1XZgb95ztZ/1R6ySsTRZaSxbt6875UZrux+qZW7Z1O8t4kAriMLv3YNK8x7wibE+aTZpGiXezbsy0y1XcEO/J0stonRHrHsJI1FccO6kcauxRmbops+66efXWtgBGdzgonlBOh6ksomZmKettmde57GWPYQ65hPOSddpXFSbGPNP8tqbLNUTkT2YpygjHXMe8hpc6TbwA02X7HhrdGw32IxsY7ZslYj+9OeM0dqL4L7zj5WNO7hU7ZYLJbtIyIPiMgnROQZEXlHxf1vF5EXReRj6ddfNO6LjO2PLjqXdcxngDaudpvLP1ks+0a6qvV7gDeRrOH3hIg8qqpPl3b9aVV9uOIQQ1V9fdvzWWHeU6yQFjmJWX+W9dn0rL9sgkkHvAF4xlhQ9QPAm4GyMHeCjTIslhrUWd23ON7ihv2nmar1/nac27K+8enXQ6X7Xw18xrj9bLqtzJ9L+9R/SETMVbX76XF/TUS+ftGTsY75jGDjDMtZRKT1BJOXVPX+NU/3fwI/papjEflW4P0kK2IDvEZVnxORPwj8goj8lqr+x7oDWcdsac02+jRvAyn1lpCgP7/TGm7Zcip5DjAd8N3ptpx0Rexs+uN7gf/CuO+59PsngV8CvrjpZFaYLSfGKitlr4LbYh3A4gOa8+pxOOtDMgl3vyfJWUYAz5GFXy14ArhPRO4VkQB4EChUV5T61H8d8PF0+yUR6aU/3wZ8GQuyaWsLLHuJ688vm9RmIdYm1A1Q92xnw13h9YN9zJlrUdVQRB4GHgdc4H2q+pSIvAt4UlUfBf43Efk6IAQ+B7w9ffgfBX5ERGISM/zuimqOAlaYLWeaLMaQoM/pCGosBaS7JlSq+hjwWGnbO42fvxP4zorH/VvgC5c5l40yLGcLb3NldeH0bMcaq/Qn8QbWG1ZhfyuWvaXqTe34xW2ub//FV0GC/on1ZO4SB/D3sG+rdcyWM4v4Nk+27CbWTlgsllOMbftpsaxFFk14/eS7Gzil2/OVGO4SrTbdnu3RbNkPrDBbOmfZ2YO+0+2/YTYI1VS/XDmpxLIQe3HbDjbKsOwVVQN+VQ2MnKA0CNgk0v5qlRrTUzITctu4vru1VUwExdH9W+DVOuY9ZV96Wmxrdt8yyBIlc9NICWMlipVIk++7hLvBZkn2U8XJYR2zZWuYF5N1BHvZWX9Ny0rl4uP64Lqo46FegLo+sbhAdW3yODrbNcv7gyLxZluLbgLrmC2nhnINM8xHGOUGRl0xnOzfx2XL7mId8x6ySzHGptf7q6vIqJsx1jj7rBRhrPpR/axny24/IJpMT/pptEMVifbkuRpYx2zZSbJSucZ9akrlsoG/pll/dnKJZZexjtmyU2QOeV3KEUZTmde6g1ynufWn+EGrqdlO4BFP1s9y3cAl6jQWUrAZs8WyGqs2s1llrT9bbbBZzKzfrsW4GtYx7xmr5subzoJXZZnJJfW5cnMsYbrncqlcVsOc92J2fXA81PGS8jhNMuUwTr6PSu54Xwb9RmFM3+vuf8ANfKIl+y17A2/ji6/OoYqE+9cXejffrZZK1hn0G+5xeZc58FdVKgeJS6sa+DNL5VotKdWSaaQMGyZJxPskBo4Hrp9fnMq/F/sJI0FEHhCRT4jIMyLyjob9/pyIqIjcX9r+eSJyQ0S+Y9G5rDBbCky2UHHQtoa5Lm9uij2cwMsdciFnNpyy+CXxKdUwL6LsmneVsps3nX+kEKmutRL40kt21bDRnsyqEE0Xfy1ARFzgPcDXAq8D3ioir6vY7zzwl4FfrzjM3wd+rs3TtsK8J+xSidymaVuR0ZRfmhUZ5sCfKcji+5VuMJtcUjXrb9xClMMtTTfeJsvMljylvAF4RlU/qaoT4APAmyv2+9vA9wGFEVMR+Xrg94Cn2pzMCvMecBpEuc1raKrIaMqXqyaWZNTly6Ygr7PO3ziMGU5CJpOIKIzP5ComqzjnukjqBLlNRJ40vh4q3f9q4DPG7WfTbTki8seBe1T1X5W2nwP+OvC32j4ZO/hn2WmqWn1W4fV7842LavLluRgDKgf+6phGMeMw2puBv1UQ358rk5PeAA2LH/td3yOazgb0vH6PcDTeynNsR+sp2S+p6v2Ld6tGRBySqOLtFXd/D/ADqnpDWvaGXijMIvI+4M8Cl1X1C9JttwA/DbwW+BTwFlV9pdUZLUtxGtxyHVlFRmXHuAr33MZluf0A1/ca8+X85wWDWlUVGfs2628cRsDJxBCnbKXs54B7jNt3p9syzgNfAPxSKr53Ao+mq2Z/CfDnReTvAheBWERGqvoP6k7WJsr4MeCB0rZ3AB9R1fuAj6S3LR2z76K8ic5y3sBbqjm+STlfznF37mP1ysQdVt9UXrj2LGsWVSSaLPxqwRPAfSJyr4gEwIPAo9mdqnpVVW9T1deq6muBXwO+TlWfVNWvMLb/IPB/NIkytBBmVf0o8LnS5jcD709/fj/w9W1emaUdgSN7L8p1LBLrqoG/uh7Mi/JlmA38LcqXy13lsoG/KsbR/jnnk2bVi+muoKoh8DDwOPBx4IOq+pSIvCt1xZ2yasZ8h6o+n/78AnBH3Y5piP4QwDlOjzPZFLsgyJNYd+J5LJsvmzGGG/h5nFGVL0vQr8yXy5QrMsxSuUkYM5xGjMO4U6faNdM1npsEfXRadJRur1c5uWQ3p2UrRN0cS1UfAx4rbXtnzb5vrNn+PW3OtfZlTFUVqLUPqvqIqt6vqvcPrDA3smkx3OVJJot6ZKw8ip86ZQn6eb5szvbL6pczmmb8TWNlGsX55JLhJCr0yQin0U6UylWV9I3DuHCRCWNlGimxuKjrJ58WHC+Jddzy7MjNN3zaaC3zHrKqMH9WRO4CSL9f7u4pnU225VC7FudNiL0p0uYbdpl82e0HczGGBP1iY3yMKKMixqhyy2OjIiMTwOEkKpTJReHJN81pmpXYBYtK5BZFTLClkrnuMuatsqowPwp8c/rzNwP/spunc/Y4iTy5jZjWzQAcdZStrrMAq5kv18UYGVmMYbplCfpFt9yiP4bplqex5jFGVsMMEO3YjMDJGlUky07LbhJqcyKQdcbtWPjuEJGfAn4V+CMi8qyIfAvwbuBNIvK7wNekty1LcpI57q7EGuYb1Rz4a9Mfowm31yvEGOb3td3ydFbDnLnmTJTjHRNnWH2wsrxIbXn2X9OSXTtDR1Oyt83Cy5eqvrXmrq/u+LmcKXZhcG0YxY1d53ZlEBDqnVbToB8UY4zs+7JuuUwmylm+XDXwF02G673gDTAKY1xHcEWYxornCJEqjuMhWSOjOEBY77nv3iST/cN+rtgyuyJ0+0BZjLP+GGaMUf9gvxBjJIN/frNbDuPKErmqGMPMlzNOy3RsdYN8OSYJ+oUZgOXZf9lF0Jz9t1Ootmr0v2vsd3HhHrGvtcnb6DZnUq7OaBtjmG7ZHPQzB/xmUca8WzZpE2Nk+TIkgmxWY0Tj3XPL6zCXLy8xyWRRr2xLNVaYN0gmxrssyKtkzV0NAGbMiXHLhVfNGKNM1aCf2XOYrEQsddBtB/1MhzwO43zgL2Pb5XJROCEaD4nDOG+ilJXxZReQaVQdyTTirpYfl/uVWFbDCnPH7IMYL8si17yNgUSzTK4qxii45VJ5XLFMzqhbTt3yFIdRqAzDmHGojKKYm5OIG5OI6+OQG5OIG5OQz92ccPV4ypXhlKvHE67emDAZhYyHU8bDkMlwShSGTI+vMrl5lWjHPkK3qWU2KU5hb7+G4iIKA74bLplTVXQ6Xfi1a1hh7oB9F+OuhTUT8mHU3lmXp2I3TcMuPK7csIjELYvnN7vl4KBQiVEWZTPCKIvy5WsjLl8Z5aJ889qY42sjjq9cYfTKC1sTZaehqf9wEqYtSSPGYZS4/haNmPJJJilmZcayJXNtaplNbCndDPubWJN9FeMymTjXVWmUKzRGsdLf8GtvclPmSiVApVvOvpfdchZhRG4vFd/58rjrqUu+MZ4X5VeujhgPE1EeHU+ZDKdMbl5nenyV4Suf3dwvpAVRFq8cJL+HrJZ5HMWcN/bL4ppCZYZxf90AoHg+mmbobj8gmrR3m67vELUcIG07HX8hGtvBv7PEPjvkJlZ1z1247qpp2dUtQedjjAzTLZuVGHWLrY7T/DX7fnUUFkT52jhsFOXh9SGjqy8zuvbiiYuyWRUyTifAAIWcuRxnFDDW/gMKOXMh1iitnZjsaj1el1hhXoHTKMgmdSJbzprXHQRs+9G1XCY3226s79fgltUN0GAw10FuFGrqJutF+YUrozlRTqKLMcPrQ6Y3rzI5vsrkenU78qa4oUvMQcesrjobAMww44z8cUbOXCCNM5pyZmCubjyjsZRxm6SOedHXrmGFeQlOq0uuYhUH3IVrbvsRthxjQL1bziOM3iHqD/III8+VlxTlyXCa58nDV16oFeUMxwvmvpah6vF1x8gE2pyZmOXM42jWHc+sPskoNDMyKM8ABBpL5qoqM5rWZ7TMYz9/tOSsCLJJVe68jaw5aVbUnC8Dxb4YTW65FGGYufIoFausLG6xUx7lefI6g3ybcNLhNKI38JJIY5AMAB4N/DxnnqaDseMwpu85RI4Ckq+Y3SZnlqA/t7zUTqM617Z0H7COeQFnySXXsYwTzvbtYmJK1k2u0AQn/YicZZrZoF+lW4bCgF/sD5jiECm5OJfL4tqIcpYn70o5XBzOC09WX21OiClXZwB52VxO6parcuaMbJp7VcncKguz7gsi8oCIfEJEnhGRuVWbROR/FpHfEpGPiciviMjr0u1vSLd9TET+g4h8w6JzWWFu4KwLch3bng0IxdWw81x5kVsODmflcf4gz5WHxmDfOIxzUX7x5riVKC+KLk4Ss8Od2Zc5jzYq4gygmDO7s4saVDSBqqFuAPBEZ/91lDGLiAu8B/ha4HXAWzPhNfhJVf1CVX098HdJFmcF+G3g/nT7A8CPiEhjWmGjjBqsKBdpanjUFGcMI93I2n+FQT9odsvBQR5hhLEyTgf9ZrnyTJQvXx9z5XjCK1dH3Lw2ZjwMOb42YnT15cZBvpNicv0VXC9gcvM6pAVxrpf8na4CPW/2NxsELj3PTVf5TuIM3FnZHCQ5M14A0RSJJnmcka2aLX6QfK9YMXsZvIFHONzR/hrVvAF4RlU/CSAiHyBZYu/pbAdVvWbsf0i6gIiqHhvb+zQsLJJhhbkCK8rVmOLclDUv6lq3DubAUtPSUTPXl3yPxSXS5GN8pEmEMY2VG5OQF2+O+fRLx1wdTnn+ypAb18b5xJGs8mL4ygs7E12UGb7yWaJwkkYatwKJc47CmMukU8fDmEHgMvBdfFe4PonoeQ6uI3hpb+xItbDGUCLKzX0/slpmtx9ULjdVxw6K8m0i8qRx+xFVfcS4/WrgM8btZ0lWvy4gIt8GfDsQAF9lbP8S4H3Aa4BvStcQrMUKcwkrys2UxRlmv7OyczbFu8sWooWPzBWrk5iDfvlkEtXcLZsRxivDKS9cGfHC1SFXjqfcuDbm+HpSDjcejtPKi5OtT27D5PorefOkKDwq9IXOyueOBj5HBz6+I/RcJ3fNYZyVzYHvzlqAEqfa4frAaK7T3Cbpas0/VW3r7F9S1fs7ON97gPeIyNuAv0m6oIiq/jrwx0TkjwLvF5GfU9XaX6YVZsvSlB2xKbrbmBFYprACdqlEDpJpxlkTokgTYb4+iXj5eMILV0d8+uWbXL4yYnhjwng45fjamOMrV3ZiJt8yRJNR6uyHwJ1AsfNdz3OSaONin57n4rvJ7b7nMI2VnivE4hYHnlwXomxRVqNCw2z9GfhLzQDcU54D7jFu351uq+MDwA+XN6rqx0XkBvAFwJNzj0qxwmxg3XJ7yqV0ZXGGmXibObP5czgMW08yKTcucgO/UBWQ5csF0hK5KU7atjMR5RuTiFeGUz57fcynXz7ORXmfBvnqiCYjhqmrjcZHhNPzJLEmXHYdBoHHIHC50POYRi7jtJQumQ2YHKMuZ4bSqtmeD+Mdb4gfaz6FfE2eAO4TkXtJBPlB4G3mDiJyn6r+bnrzzwC/m26/F/iMqoYi8hrg84FPNZ3MCnOKFeXVaMqd67a1xZzxV4f0BsXZaaUYI/YHuVseRclEkpeOJ7x4c8zla2OevzJkeGPC1ZePmQynjK6+vNN5clvKuXM49fF8l+eDIYHncHTgF1yz7wj99BNFXc6cDQAug+N7xLvaRH8JUlF9GHgccIH3qepTIvIu4ElVfRR4WES+BpgCrzBbF/XLgXeIyBSIgf9VVV9qOp8VZqwor0uVOJdds3lfG+qctNsPKmtlq2b6QTLoN44ixmEy4Pe54TTPlT/98k1uXBtz9eXjpOfFFjvDbQPT8UfhEZ7v4noOVw98XrgyygcCzwduXtvcc6UxZ84wmxl1xWYGBBU6mhCjqo8Bj5W2vdP4+S/XPO4ngJ9Y5lxWmC2dsMg5l8vmpnFcu1J2mx69bj9Ilo8yy+RKM/3UH+Sz+kZRnPZVjnjhalIW98rVEcfXx7ko71Oe3JZsUDCaDHG9u+kNPC5fGeWRhu8I1wMvyZrdZPJNLC5ixhlpzpyRlcxZNseZF2brlrujagp3ss05kd+zOh5RCMfTmM8dT3npeMLvv3LM81dHfPryDW5eG3Pt5eNTK8oZ0WTEBPAPjrh5rRhpBJ5Dz3M5H7h55UoV6qYXv+l0v0Q5jol2PQev4EzP/LOivDkmsdZ2n1umgf4i8hVKyg2LvIBY3KQMLP26MQ6ZhDFXjyfEUcx4GBKFIZObVzt7PrtKNBkxPb5KHCZVGpN0+alkYdko/x1llSs5ZhtQy9Y40465y9paS5HAkZXL5qJp1LpaQycj1A/QoI8EU4gCxA0hnOBGYzzHp+86nAtcbj0IuDYOufNowJXjKYcXekyGUwaX7uTGZz+10nPdF9ygj39wRDDw6Q18js4FeV3zuZ6H70j+5Yrxd0srMySarNQiM56GhA0TT6INr5GosS418WVXONPCDFacu6Rqtt+qMwCTgSAPmM5VZUSjCVHg4/amaDhFp6lo+H6SjUaJa5ZoSt8POBc4ROoxDmPGUT9t6nPI704iwumAcJrMljsN1RhVBOcvERwccXDxIocXepy70OP2C31uv9DjVYc9bjsIuOXAp+cKPVdwNEqmYYcTJA4hiiCaDaDpdJLUMaeDam1qmMPhNF+9pGqQz9zW1eSSfebMC7OlG0wBLl/oyreX7Z0RjibJP2q/RzSazDXLqXPNGof4xLngHPW95OP6Jc0/xv9eFBca/+xiP4x1GFy6Az8V5fO3DBicC7jr4oC7jvrccb7HpYHPuXQQsO85+K4g8TSpxjDcMpAsXFpyzZkbjUYTomm4lDvdtFuGZObfPk5+scKMdc3rUuWKyzFGF42MwtGYIO2VEU2mROMxrjdMSrcqXLOEExxniO8f5lOPR0HMpYHPPZcGiXOeHORLMnm+y/GVxJ3vuzi7QZ/g8Ij+pTvpDXocXOhxeKHH7Rf73H6+x51Hfc71PM4HLoeBS88VvDTGmHPLMCfITaVy8SQkHI0r65cXlcRZt5xghTnFivNqlEXZ/B1uopFRPAmJpuGsljlM4oysj4PpmokS55e55qknHAbpbLeDgHtfdZjEG2HMi+nxHe8W3N4A1wv2tlLDDfoMLt2Jf3jE4PyA/oHPwfkel4763Hk04M6Lfc4FHrcdBBz1PfpuMi277yUxhumWAYim+XTsPMaAvNqhySXX5cumW97BhkYnjhVmAyvO7WkS5G0wy5l76HiIpvXMpmuWOBkEFD/EdwP8SOi7Th5pjKOY19x2kC9a+orv5C0z4U7cYLB3uXOWJ/ePbiUY+Bxe6NEb+HO5chZfJN3lMNxyOHPLkA/6AcWBv1K+3BRjmPlyE6ZbDkcdibXawT/LGWGRKJsxxjKCXf1mTAYAs5/KOXMSZ/j5IGDWbEeCtM9DOgjoO17umiNNqjQgYBopw1tnguC4Dp7vJrGGl5xjX8Q5OH+J/oVXERye5+BCn97A4/BCj/7AL+TK5wKX8z0vd8uuI7hCPuiXYwz6VYlzleBlMUYVmTO2bnkxVphLWNfcTFtRroox6n6viSB7uMHi6KOcM7v9IHFvvUE+CJi3pwwO80FAiRPXPFCHKFYO00VfLw18xmHSDGngu7zgOVxOz+X5iUg7XrDzTY3MQb6ZU/a4dNTn4kFQyJX9tHwwc8u+I/iuAFo76Jd8T2+X8uWoIktepz9GZ26ZdPBvD3t1WGGuwIpzNcs45bYs02HOJMuZo9EkjzPMQUAAJ5rkg4A4Hq7bwxXFdZJII/I06RNxMCvH63lJB7bngyE3rmWv9yLATubOdXly0Pe4/WKfo4OAu476Sb1y4NFzHc4HbpIpp26551bEGMagX+F7Tb5c5Z6r8uU6t2wH/YpYYa7BivPukOSTiSAEvkc8CQsrZkTjMS4z0VA/EVodXgc3QKaJw3Ndn77XS9tbxkTqQH/2Fuh5Li8Gs4/hz5O4ZtdzcDyH4fVkpZRdEme3N8DxAlzPy5sUeb7D0bmAQeBxceATeA4Xel7SsKjn5T2YTbecxximW04H/XQyKlzw6uqXq2KMtvlyvn+HbhnsBJNTiRXnGV0M9mW/z0XrAJbdk+mo42lISHGJqShdlNX1EgHOP3IHfZzJzXw/8QJc4NAvre6cirNvvMZB4BJ4DpevFbNl17t7JwcFvbTxk+e7OOnrCDwnWU4qXevvXJDM8DsMXFyRObdMGvlk2XJ5sVINp+h4SDQezy6K6aBfPJkJatVsv3KWbN1yM1aYF1BePslSzSoxRrnDXDSJgRCvX/y3NGcBwsw1Q7LMVObc3N4UBTRd0UQnI5IWSgkOSTNcF+h7AZDkzVB0zr4rDCo63Hm+y81rY7J19XZtMornz36XPc/JX8PAdzmXxhdH/UScPQcG6YSSfKbf+GZttqyTUZItG2657ETLtctlt5zFGHWibLrl5H+hA1QLF419wQpzS86ye97Uwqom4ahOkOfbgGauOQi8wsBObaRhTjoZJw468EnaWuLCJKIsziYD36XnOVy+MnPInn/7TkxGcb2gdNshCFwGaSvPIG2C77tOXh6XuWVXaOWWdTIqZMtNbhmSbDkczmIOU4jbiPKuIiIPAD9Ecm1/r6q+u3T/twN/EQiBF4H/UVU/LSKvJ1lm6gJJA9XvVdWfbjqXFeYlOGviXCfIXf8OygOA2ZvUDdzCPnWuOaMp0oDrCDPXDOD3PPAcqsS5n9Yz+44QeLPfw2US8Tu+7gAXd2IySpIzO3m+bDIIXM71vIJb7nky75bDSbFZkZEtA0u7ZaDSLee3G0S5M7dMkjHXle8tg4i4wHuAN5GskP2EiDyqqk8bu/174H5VPRaR/wX4u8BfAI6B/15Vf1dE/gDwGyLyuKpeqTvfWsIsIp8CrpNcBcIuVpnddc5KtLENl1xFNIkLZXOLXLMH+SzApkgDyGcEOhznEYffO5+LsxvGuZu8OYmAgJ5bigcCj+evpIOJnoNzzWHXJqNk+fggcBO3b5TH9dysg1zRLZtNioDCgF+VWwZyt2wKX1u3XEeXotwxbwCeUdVPAojIB4A3A7kwq+ovGvv/GvCN6fbfMfb5TyJyGXgVcKXuZF045q9ctH7VaeQ0u+dlRXmVfDkbADRz5nKcEU2i3DXPHFfRNcN8qVZjpAFoWt/M+CaO4+H7g1ScMz/tQKkFcbli40rg8srVRITNySgnmTtnA39Zvhx4TjLgl025TsvjvFIlRrmLnBrN8LMBP3N5pqxhkUl5wG8Vt7wRUVZtW1N9m4iYq1Y/oqqPGLdfDXzGuP0s8CUNx/sW4OfKG0XkDST/Xf+x6cnYKGMNTqN73rRTbntBM0W6rtbZdM0meaTBNTi8QHzzmim5Sd48AYIBDK8mzrmFOEM6ESV1pJDNFMwE6VYc72Ry56wqw8yXbzkM8jX9zMkkVW653HO5UB7HzC2XS+SqBvxmP8+75ba58glkzi919YlfRL4RuB/4U6Xtd5Gs/ffNqtp4FVpXmBX4sIgo8COlK8yZ4bS45zaivKnXaYqvGWfUuWZvUH8sUzxq8+bBeYjSeGRyXCvOfj9th5kNoBkVG1UzBY/T+7aZO7upW8/6fGQxhu8IvdRBL+uWswij7JahetCvrVuuY4cjjIzngHuM23en2wqkq2T/DeBPqerY2H4B+FfA31DVX1t0snWF+ctV9TkRuR34eRH5/1T1o6Un+hDwEMA5Fi+yua+cRvfcJVW1y4vijCbXnDkzDypdc0ZT3iwTZq44muLEIYE/wPV7uAK+k6wcXVWxYQ4KmjMFy5NRNrnqdnD+Ur4qyeGFZLbfXRcHXBz43HnU59aDgFsGPoeBu7RbzgmnBbdsxkZdueWyKHc7JTtuXEFlCZ4A7hORe0kE+UHgbeYOIvLFwI8AD6jqZWN7APwM8OOq+qE2J1tLmFX1ufT7ZRH5GZKA/KOlfR4BHgG4XXrdLfa2o5wW99wVVb+Put/Rsq7ZbG5UJ86Tq9cJjs7PxRkx4ByeL4pzWkqX1Dn3ynsXZwm6mSi7vJCW0ZVz501ORskaFp277RaObj1gcC7gNbef4/bzPe591SF3nutxy8DnlgOfc36SMffcxP270RiZDpHxTZzpMTIZosPrxDevE9+8VnDLZVGuc8uZKEfTuLJZUSbKiyowdrVsTlVDEXkYeJzkX+R9qvqUiLwLeFJVHwX+HnAO+GeSLM/1+6r6dcBbgD8J3Coib08P+XZV/Vjd+VYWZhE5BBxVvZ7+/KeBd616vNPEWRPnUaytBgCXdc3mhJPsje0NvLXEWdKP5ZI553RAEDdKMudUnL1oyoE/wHedpCWmUbHR8xxupM+n56WxRk3u7Pm3d94EaXDpDvqX7mRwftCZKDdFGFWinLnlsihnVE0mKbMNUdZYC05+rWOpPgY8Vtr2TuPnr6l53D8B/sky51rHMd8B/Ex6ZfCAn1TVf73G8U4Vp1Wcu3pdi1xz20jD7KPRRpyV1P8enCe+cQXn3EXyzHkC4rpJnbPrLxwULOfOQVoN8YLncCVwO693zhoW9Y9u5eBCn8MLvUZRzhrgN4lylivHN67kTfAzUc7dco0om5jr+ZVFucotm6JcJchnvR3oysKc1vP95x0+l1PHaRXnNgyjOB9MXPR7qHLNGYsijUyk22TObcRZSeqcNU7U1xRnVxx8R/HCRJRHxlqBvXRmHWT1zuNiE6S03hlWy53LvZabRDnrs9zzFg/2xTevF2uWy6LcsF5e5parFlndGVHWopPfF2y53IY5y+JchRlntHXNbSINtzTjzcSsuV0ozkE/qXNmtqxSPihYkTu7B/5ctJHVO5ebIK2aO2eifHDxIgcXehycT1a6vuvioFKUD303n93X9wSfGGc6RCbHiWOeDJHJzYXTrttGGNnfLPl1NVdhNInyWXfJJlaYt8BZEOe2OfMiMte8TKRRnq5dds35+oAYi7jCnDhL0E/qnAFcv3FQ0HOSmYLjUGujjReujmZ9NirqndvkzmaefJguqHrpqM/tF/rcddTnzqN+0Sl7TmtRLrhlM8JYIMomVYN9dW75JEQ5yZj3T/CtMG+JsyDOTZivv8o1L24FmkQaZh+N8nTtNnmz2ce5LM6kP8t0OqvYMAYFJZwgwQEH/oAps9zZc5y5aAPm+2xkuXObeudynpwtE7VQlEtTrp1JSZQremHMRRgNFRgwH2Ekv/tuRXka71/80CVWmC07R51rbpM3tx0MzDDFWTw/bxEak1ZsFAYFDxBjMorru7gC4yiX9zzaSETSoedl/ZBnuTPQ2Hy/bpDv9ovJKte3X+hxx/leXqdsinJ5sG+uVtmswDB7YdQM9mWYEYZJ02BfFdsWZdX2k1x2CSvMW+SsuWZzAHD+vuVcc9u8eZnBwJzxGDec5tO3ZTpBJqO53DkfFExzZ/EH9L0evqt5SV0WbVTNFjw68Dka+LxwMOTylVG+6Gtv8Br8gyNG117E9YLG6OLowOdVhz0uDXzOB26jKDvDq0WnbIhyoV755rVclCfXbhYy+XKunP1uswijqSyu7JYXifJZd8kmVpgtS1N3gVmUM5cf16auua5Pxkyo6wcDm8Q5moa4voc7meIavTXU85FwWp87V0QbrusXZgt6IYQxec3z+SBZPeTSwOeWw4CLBz53Hg144Woi0MMbE4KBz+TiRRzPydftMwf47rzYLwhyz3M4DNy8+qKQKU9u5PGFM7w666/cUpQzp7yKKNdFGKYo2+hiMVaYt8wuu+Ymh9vVMetef1UGvSjSWCTOCWnlwGhCPA1xfA9vEhaWpjIpRxuSTk+W6XQu2sjcs7h+nj1nE1LCeFZWN411TqBfGU4rBdr1nFaC7KctPFvVKaeinNcqp+KcxReTazfn4otFopyxKVEeRt1MEraDfxYLy1dnLCqfW0eczczZG/iEo8nCaCMaTXD7AW44RdPMOSaZKZi756Cfu2dToM1eG5HO4o0oVvquwyiKOep7XB3NC/TRQcDV4wmDwOP28z2ODvy5HDlb3dtzEjde55IL5XDmjL7phPj4ej7QN7l6fW6gD9qJcjSNGntgtBHlOpfclSjvM1aYLSuxjPNv65qLj5mPOdYV54xWuTOJe86mcYsp0pl7nhPoEE3jDccYHIwUwljpxcI41GQ1kTAuCPSdR30+dzMRwaqBPVeSlUf8tEOcKzS65LwUrjTI1yTKWfVFG1HO6FKUNyLIqnu52KsVZkvntHHNi8rnzO1VMwJXEee2uXN+23DP5YFBCfrVAh1NiFP37DgeB/6AWFwiVaaRMvBSkXaFQ99lFMXcnES5QPdch/M9j9sO/DymyNyxK8lCsT4xEofIZNrKJReaEt280diUqK4HRl2tcva3yH9nuyTKe4wV5hPgrOXMbY7bVpwLE0s2IM4ZmShnmAODWfZcJ9BOFCXu2fFygXZdn0BAXY8pieBGCsNQOOc7XOx7eR10NnMvy5ELYjydJgunhombdUZXW7tkc5AP5vsqLyvK0SRaW5Q3LcjJmn82Y7acIZouMMu65jasK84J1RUbjMZ4/V7tuXP3nN7WBQIt0QQNBrlAZ1Ud6gX0HI/A9VHX49BPBDkR6bhCjKdFMY6mSa8LSGqTq7rDLRDlrByuvGbfsqJc+P10KMpZb/OzjBVmy9aocs3LRBpQLc4Zi8TZ9bPZgkVxZjTB6we5e45LVRtF93wjiTayxvtNAp1WbKgbgOvCFNQNCkLteAHnHA91fc6n082d6TGEMyEGErccTSBK4pLkibV3yWZ0kb2mdUV51Uy5ySV3Lcqqe7E6yhxWmC1rsazrXTfSgOZ+GnXinGGKc8J8xQY0VG1MpriBkT23EGiYVXIIw2qhdn3jJEVXnItxKtJNOTLQKMpVlRdQ3ymuSZTrplmvIsr74JJF5AHgh0jGhd+rqu8u3f8ngR8Evgh40FytRET+NfClwK+o6p9ddC4rzJY5usqZ25bONYl7V+Js9tbIqKrYWOSeTQqDgw0CDUklBzDLomE2YAjguolgs1iMs9vASi4ZFldeQFGU2/a+MB+/E9FFRxmziLjAe4A3kayQ/YSIPKqqTxu7/T7wduA7Kg7x94AD4FvbnM8Ks2Vtls2al4k0mu5rK84ZmTg3DQqa7nmSTUhJH29GGtnPbRw0GCumpE4aqHTTycHbiXF2njaCDHQeXZjbzP2zv41JlSg3CfIOVmm8AXgm7UOPiHwAeDOQC7Oqfiq9by47UdWPiMgb257MCrOlkk1VZ7Q9flPfjEXiDMw1PSq7pqpBwYRiY/i2Nc9VAq3jYV7Foal71tRJA5VuGpgT43yFb0OMoT6yAOZii+R3UO2Sk59Xz5PN/WH96KJLUVZtPfPvNhF50rj9SLpeacargc8Yt58FvqSDp1iJFWZLJ6xboVF1jKZZgYsGBKs60i3OnaFKoMvuOYs3ctds1D8XBLrXSxxt6qLz9QbT29y8ljjoklCXxbggxEC2Fh/UN7WHoiBDO5cMmxXlHXbJL6nq/Sf5BEysMFtqWdY1dzEQuClxBmqjjfy2b0YdmcDMzxjMfi6TCXQ0mqTNkdLoY5wIo5sJrDcb6CuI9c1r+fY8ooBciKP0ODCLJ5oG9oBCY/u2A3zJcaOlogtYXZR3MLao4jngHuP23em2jWCF2bIVlumhsQlxBpaMNpoHBzMHndU/l100kAs0gBv4swb95sSVCrEuC7HZFzlbg68usigLstk/uWlq9UnkydsQZNXOOtc9AdwnIveSCPKDwNu6OHAVVpgtndJ1+dxsv+XFGViYO5ejjSqBbsqfgUqRjgIvjzmAwlRv11jg1A1mwmmurgLzIgzF9QvbCLIZWyS3F08Y6VKU99wl56hqKCIPA4+TlMu9T1WfEpF3AU+q6qMi8ieAnwEuAf+NiPwtVf1jACLyy8DnA+dE5FngW1T18brzWWG2NNLlIGCda24TaST7LSfOQKtooyp3XkagzXtyyRqN8dKMN3PSGW5p3bxctNOp0lAtwBnmUk/ldfiWFWSYd8nJtuXyZGgnym0FuasSuniJcy5CVR8DHitte6fx8xMkEUfVY79imXNZYbZ0ziq9QLYtzjBfUldV8zw/axCyt000Hc+vzp1GHVAU6eT4yZRvU1jLom0yv9beuHh/TVyRPLdqQS5sW9Elw2p5chuB3IeJJtvACvMJscuNjMpswzXXsa44A0tFGyZVk1JMga4aJMzqoGH+zVVVtNX0BqwT4tn9qwkyNLvk8vZt5MmbEmTV/RR7K8yWrbNMpFFHW3GG5aKN4vYo3T4/MaXooKEp5ijvYdJUYdskxMlrMcrmGgS5sH0Jl2w+DlYTZeuSV8MKs6UVm55w0nSeuk8XXYozUFlW1xRvZFTXQUOTSOcY0YdJWYST5z1/vLYOGZZzyeXHbyK62IYgx+jeDTSCFWbLhlgU1TRFGpsUZ2iONqBaoDPK8Uadiy7GHBS72bWgSYSL+7WLLPL7tuCS6/Zr2t9SxAqzZW9YVZyB1u4ZqK17Lscb2ePb0fRWW06Ei/stJ8jJfYsrLuB0iLLNmC2nnq7jjGVdM6wmzuX7oV6cgbnBQaiON0yqBgrz++by6CLhkLne0nX7z5fwVefH5uvIH9uy4gL2N7o4LVhhtpwoXYpzeR9gpWgjY5FAZ/dBURSbRLoNVeKbP6cq11wxoFe8v11sAbvjkodRN83t4w6PtU2sMFt2mmXEuaoj3SrRBiwWaKjOoMtuuq1IFyKVhv2rVnxeJMZV+3S57FOXoryPIroJrDBbNkbbWu1la5ubjt9GnKv2M90zLBZoYE6kzX2y/aqEtExVXr3ocW3EuGq/RbEFdNeAaBlRtoJcxAqzpTWbLJdbJdKoY1VxhqJ7hvn8GYoldhnlWuhsv4zy/sXHLhbv8vHmj9HskOFsinKsyf/WvmGF2dKKVUW5qxmO6wwGNu3bVpyh2T1nVAm0uX+ZJsFusyRSG5cMi6MLOH2ivM9YYbbsDF1GGrC+OAOt3DO0F+gyq6xHV7fq86ouGU6vKCu6l9UgVpgtC1k3wti0a246xzriDO3cMywWaJNFYr3o8WXaCjKsv0DqPonyPrPWO05EHhCRT4jIMyLyjq6elGV32MY0bJNFeWDTG3oZMamrLqjat8phhsOwUvzCUZh/1RFN4tZfTVSdp+55Vb2OsyDKsSbnW/TVhkV6JyI9Efnp9P5fF5HXGvd9Z7r9EyLyXy0618rvOmM5768FXge8VURet+rxLLtHl6J80h8n1/2oPo3jpQQa2on0MpjHW1aQz6Iod0lLvfsW4BVV/c+AHwC+L33s60hWPPljwAPAP0yPV8s677x8OW9VnQDZct6WU8C2nbLJJlzzsvvXCVHdMkWZMLYR6SaBbdq/jmUEGc6WKCvJc1z01YI2evdm4P3pzx8CvlpEJN3+AVUdq+rvAc+kx6tlnXdf1XLer17jeJYd4SRFuS1dRRqL9l/GPWc0CXTl/kuIcPkcdYN7dc/vLIlyx7TRu3wfVQ2Bq8CtLR9bYOODfyLyEPBQenP8D/XTv73pc54gtwEvtd67Xfnq9ql/Xsu9vv3iNL822M/X95p1D/Aik8f/oX76tha79kXkSeP2I6r6yLrnX5V1hLnVct7pi3sEQESeVNX71zjnTmNf3/5yml8bnP7XV4eqPtDRodroXbbPsyLiAUfAyy0fW2Cdz6z5ct4iEpCE24+ucTyLxWLZVdro3aPAN6c//3ngF1RV0+0PplUb9wL3Af9v08lWdsx1y3mvejyLxWLZVer0TkTeBTypqo8CPwr8hIg8A3yORLxJ9/sg8DTJamLfpqqNQaYkgr4dROShk8xtNo19ffvLaX5tcPpf32ljq8JssVgslsXsfl2UxWKxnDG2Isynfeq2iHxKRH5LRD5WKrnZS0TkfSJyWUR+29h2i4j8vIj8bvr90kk+x3WoeX3fIyLPpX/Dj4nIf32Sz3EdROQeEflFEXlaRJ4Skb+cbj81f8PTzsaF+QxN3f5KVX39KSlJ+jGSqaMm7wA+oqr3AR9Jb+8rP8b86wP4gfRv+HpVfWzLz6lLQuCvqerrgC8Fvi19z52mv+GpZhuO2U7d3jNU9aMko8om5nTT9wNfv83n1CU1r+/UoKrPq+q/S3++DnycZKbZqfkbnna2IcxnYeq2Ah8Wkd9IZzqeRu5Q1efTn18A7jjJJ7MhHhaR30yjjlPxMT/tcPbFwK9zNv6GpwI7+NcNX66qf5wkrvk2EfmTJ/2ENklaNH/aynl+GPhDwOuB54HvP9Fn0wEicg7458BfUdVr5n2n9G94atiGMC89HXHfUNXn0u+XgZ9hQeeoPeWzInIXQPr98gk/n05R1c+qaqSqMfCP2PO/oYj4JKL8T1X1X6SbT/Xf8DSxDWE+1VO3ReRQRM5nPwN/GjiNjZrM6abfDPzLE3wunZMJVso3sMd/w7TV5I8CH1fVv2/cdar/hqeJrUwwSUuPfpDZVMbv3fhJt4SI/EESlwzJFPef3PfXJyI/BbyRpCPZZ4HvBn4W+CDwecCngbeo6l4OoNW8vjeSxBgKfAr4ViOP3StE5MuBXwZ+C8j6bX4XSc58Kv6Gpx07889isVh2DDv4Z7FYLDuGFWaLxWLZMawwWywWy45hhdlisVh2DCvMFovFsmNYYbZYLJYdwwqzxWKx7BhWmC0Wi2XH+P8B8SE3iZQ/o90AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# padding to show the side with Dirichlet BC\n", - "fullT = np.pad(c.T, (0, c.nx * c.ny), \"constant\", constant_values=1).reshape(\n", - " (nz, ny, nx)\n", - ")\n", - "plt.figure()\n", - "plt.contourf(fullT[:, 0, :], 100, cmap=\"RdBu\")\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The gradient across the structure is shown below. Note the part that can bridges one disconncted component to connected one has negative gradient. One the other hand, the island in the upper left corner has postive gradient itself, but also tries to connect to the top and right where the gradient is negative." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD8CAYAAAC4uSVNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6Y0lEQVR4nO29f7Ar53mY97y7i8XBOffy3kteXpqiVEl2qDZKPZJbRrEnSivZkqIwaSjZliulbZiJPUo8UuNM7TRyXMseJ5pRktpu2jiOGJmR2rElaxLT5tQcU7Rih0nb2KJVySIleUSrlMVrklcUeX8eHCywePvH7uIs9uxifwPYxffMYA6wWOy3wDnn2Rfv937fJ6qKwWAwGLqFtekTMBgMBkN5jLwNBoOhgxh5GwwGQwcx8jYYDIYOYuRtMBgMHcTI22AwGDqIkbfBYDAUQETuF5FLIvJ4xvNvEJErIvLZ8Pb+Ns/HafPgBoPB0CM+AvxT4H9fsc+/U9W/tI6TMZG3wWAwFEBVHwVe2PR5RKw18rZHN+ng9IV1NtkOsqlmN9RwDsqaRumawcA7xeTrf/i8qt5a5xjWmZcps6Pc/fTw+SeA+I73qep9FZr8DhH5HPDHwI+o6hMVjlGItcp7cPoCL/3ef7TOJhvFGdhrb9O2u/flyPfnrR5/NvVbPb5hO/jDn/+er9Y+yOyIwX/yttzdvM98+EhV76rZ2meAl6vqdRG5G/hV4M6ax8yke2bYAM7AXpu4bdtaunWRts9/ExdRgyEPVb2qqtfD+w8BAxE531Z7psNyBesUdl+Jv7cmI/Lod2OicMNqBMtx19OSyDcBz6mqisjrCILjb7TVnpF3CuuQdmtRqdv8uc+8ZgQZvWcjcUMXEZGPAW8AzovI08BPAAMAVf3nwPcCPygiM2AMvFNbnLbVyDtG16TdhqiLtFNX5m1E487ANgI3nEAsC2c4auRYqvqunOf/KUEp4VrYeXl3SdjrknUeTcq8yWjcROGGXWJn5d0VaW+LsFfRhMyNxA2GcuycvLsg7baEbdmr68TnfjPpuej8q0rcpFIMTSEi2O7epk+jFXZG3rsg7Tw513l9FbFXlXjTUbgRuKGP7Iy8o3/gNiXu+/Nel/0ZDJ1DrLWVCq6bnTNN21FYnWixbhVHU2mPJo9b9T01lToxUbehr+xM5B2n7Si8TgQ+8/xa6ZNItHVTKPFjVWXT4jYYRAS7oVLBbWPnIu84bUZlm4zAIRBvVfnWeW3ENojbRN2GPrOTkXecNqPwTUbgEWUj8bZSL0UwEbehccTCNjnvftNWlLbpCDwiL5puItqOaPK8K5+DiboNPWfnI+84bUXh2xCBR8x9PRGFNxltb0O6xGCICOq8Tc57Z2gjatuWCByOo+wmo23YHnGbqNuwCxh5Z9B3gTfNtojbYNgVjLxXsG0CNxgMJbEs7OEo91YEEXmriPyBiDwpIu9LeX4oIr8cPv87IvKKpt9OHCPvHPr8FbyJWnCDYRcQERv4OeAvAK8G3iUir07s9v3Ai6r6J4CfBf5hm+dk5F2ApgVeNfre9tSJwbBtSDg8Pu9WgNcBT6rqV1TVAz4O3JPY5x7go+H9fwV8l4i0FiEZeRdkWwTeFFHUvcnoe9OfgcFQgjuAr8UePx1uS91HVWfAFeCWtk7IlAqWYDb1e7H4rUmXGHYFEcFxB0V2PS8ij8Ue36eq97V0Wo1g5L1BtmUWQsuWjY6sNBi2gOdV9a4Vz18EXhZ7/NJwW9o+T4uIA5yhxQWIN2+OjrHpDsy6ee9diLr78O3I0BAS/D3k3QrwaeBOEXmliLjAO4EHE/s8CNwb3v9e4N+0uQCxkXcFmhT4tuR91y31bXnfBkMRwhz2e4GHgS8Cn1DVJ0Tkp0TkL4e7/QJwi4g8CfwPwIlywiYxaZOKdDH/nSdokz4x9A1BGktNqupDwEOJbe+P3T8C3tFIYwUwkXcNNp1CMayfEl+zDYZWMZF3TZqIwNfRcVk0LdKX6Dv5O6l6oc363Zq1MZtj5k03fQqdxMjbcIK+CDxOmoSz5Fv0YmwEXo5NSFqs+gt7bytG3g2w7ui77DSxVToj+yjwJE2kP4zA8zGRdTsYeTfEtnZgbmtpoG1bvak4MQJPZ1ukva3/A3XJDfVE5GUi8lsi8gUReUJEfijcfrOIPCIiXw5/nmv/dLebvv0Dl/mj7+tX06Js44V7E8y86eJmaJci39NnwA+r6quBbwfeE86m9T7gU6p6J/ApWq5p3AWajkSbiDj6GrUYmmVbhR0Mj7dzb10kV96q+oyqfia8f42gQP0OlmfQ+ijwtpbOsVP0LfoGI/Ci7GL0va3S3gVK5bzDycW/Dfgd4DZVfSZ86lngtmZPzVCHIsJ1XNtMM9swu5T/7oK0RaS3F9XCxcUicgr418DfVtWr8efC8fuppQki8m4ReUxEHvPHV2qdbFeo88+7rk686Kti0a+MJvouTl9lEacL4u47heQtIgMCcf+iqv5KuPk5Ebk9fP524FLaa1X1PlW9S1XvskdnmjjnTrDNAk8Ku6mcX9njbMOMim3RZ4EbcW8HRapNhGDClS+q6s/EnorPoHUv8GvNn163afPrc9V0R5Zgi4jXRN+GzolbgiAh79ZFipz1nwX+O+A7ReSz4e1u4IPAm0Xky8CbwseGhlhH+iQZHXa1131b6Vv03Tlx95zcDktV/fdAVsj1Xc2eTv/YpsE7cTlH55TsYMvrxMwbeVm2E7RPg3X6TFfFLQKO283IOo9+vqsto2r6pKrU0tIbaeLOfJwTgTedPunq19YibMuFuw5dFfc6EZF3hIMY5yKSuSKPiDwlIp8PMxiPZe1XBDM8fk1sMgLPEnc86o22RxeadZcRmgi8PeLyLbieY+pru4hIc/N55/A48N3Ahwrs+0ZVfb5ug/0NeXpCk0JLijv+M22fVRH4qui7au68zxH4pkjKt8zw9a6Le52o6hdV9Q/W2aaJvNdI1eg7a8bBIrMLpj2fPFYy6o3nwU0EXp9tHbizKiLvi7hFYFgsmFjX6vEKfFJEFPhQnTaMvNfMQooNpVDKTg+bRRWBr+q8rCP9bRZ4dOHb1vOLU0bA0b5l0yo9Im/1eETkN4FvSnnqx1S1aKn061X1oohcAB4RkS+p6qNlTxaMvDdG2Si8zHzfc18b71SsIuM+CbxrKZ2qkXNfIu4IS4RRQyWwqvqmBo5xMfx5SUQeAF4HVJJ3t/4ie8Zs6pf6Op0ls1WCTHuuqBSLXFzaHLizLcJMO4+y57bOzuq+CbgviMiBiJyO7gNvIejorMR2/HfsOG0LvCmqpGfqpnQ2OQIur+1tubgYNo+IvF1Enga+A/h1EXk43P4SEYlWnL8N+Pci8jngd4FfV9XfqNqmSZtsCU3kwuP577TUyapUTdZFocggnqYH7qSxzjRKl6Vsou5lLIGh0/7vU1UfAB5I2f7HwN3h/a8Ar2mqze7+lfaUIlF4WYnVSZ1AM8Pom+pUbTsSL3vsbRK9EfduYSLvLaRIFF6nfLAN1r1gcfK9V4nKt0m8hnYQEUZuPzVn/nq3mLq1wWkyrXrMbYm+s8iaJW4dM8kVPVabnZYm6t49+nlJ6hGrovAo2kzKIy36TttWNlrNy38Xib7XNehn3VH1JksbjbizsURw15Dz3gRG3h0hGTHHZZ6Uhm1bC0FGwrZsOSHNspFg8hzqzClull8zGOph5N1Risi8qMQrtZ9xjHXnvncdE3WvRgRGPZjZMQ0j756wlM4I/1jLSLxMProJ+fcx+t62UaGGfmPkvaUUjajS5qJI5snzJB60V0zkRYRrou/1YKLu3cbIe8so+w+Ztb/jDk5E46skDukij+9TJlLeps7LbWJbZxjsK5YI+z1d3s/IewtoI4JKzhIXj8azJB7J9sTIzIqC3cUIfF2pExN1G4y8N0TRf775zKt0fMtxT7STjMYjikq8DXYx+jasD0swpYKG+pSJlqpKO+31ZUSOFz3fjMRN+sRgaAcj75Yp+/W2qLT9yTh3H3s4OnHMpMjjEo+nVJqU+K4J3FSdbA/S4Hze20Y/v09sCZvOS6YJPnlxiJ9jPBKP5BMX6tzXpVsRiuw78/xOiXsTc8fE2fTfleEkIvL3ReT3w1XhPykiL8nY714R+XJ4u7dOmyby7jmRwKMoHI4FHo/C4x2b8RLDKB+eJqw0KUfReRG5d0nYEZsWt6EclsW6Iu9/rKo/DiAifwt4P/A34zuIyM3ATwB3Eaxl+Xsi8qCqvlilQRN5bxmRUJsmLwovEoEXkW0fI+2IMuI2MxbuFqp6NfbwgEDOSf488IiqvhAK+xHgrVXbNJF3S2zjV9usKLxoBB7ss7lRmdtEn3L0fUYQBlahC2nt1eNF5APAXwWuAG9M2eUO4Guxx0+H2yph5N1BVnVW+t4Y2x1lPh9/fbxDs4zAI7IG82Q932VMuqT31F49XlV/DPgxEflR4L0EKZLWMPJugbpRt+W4lUoFfW+89BNYKXJ/Mi4tcMhOCfRJ1nGaFnedUZbb+I1uVyixevwvAg9xUt4XgTfEHr8U+O2q52MScz0hLuzk9uiW+nwsii+SA4dA4tGt76wSd57UTd5781gCe46Ve6uLiNwZe3gP8KWU3R4G3iIi50TkHMHq8Q9XbdP8dW0pbXRcZom8isAXr90hkRsMK/igiDwuIr9PIOUfAhCRu0TkwwCq+gLw94FPh7efCrdVwqRNGmYTX2uzouoir4nSKkVTKBFlVvbpKibP3X0EGFjtT/Ogqt+Tsf0x4Adij+8H7m+izX78l20RaVO0tk1eB+W66UMUXlTcRvCGTWEi7y0mq+PSHo5OVJzY7mhlBJ4n+Hj5YBHiHZlp9C0K3wZMZ2V5RIShmZjKUBTHHTT2jxalL5ISzxJ4k202QTwK30WRm3lODG1h5N0R0qLwKFouMklVG+RF30m6Eo2bVEh/sASGTj9/n9v9X9Rh2sh9Z0XEZVMeTb++LH2rTjGyN2wCI+8WaUvgaRJft4Aj6izptY0SNyI2dIVceYvI/SJySUQej237SRG5GE5/+FkRubvd0zQkyRJ4/FaE5H5V8t1112TcRokb+kEwt0n+rYsUibw/QvrMVz+rqq8Nbw81e1r9oc3SwawoPCIp8zJS3wSblnidqNtE7IZ1k9thqaqPisgr1nAuvaXJ6pM0ys6F0obAy3ZerqIrHZt1KDu/iSkTrIaEw+P7SJ139d5w5Yj7w3H6qYjIu0XkMRF5zB9fqdGcYRVtzQO+K7QZOff5ImTYHFX/qn4e+BbgtcAzwE9n7aiq96nqXap6l7V3085GEOsYeRmlUaqKPPk6xx1sZMRoVzGpk+1DBAa25N66SKU6b1V9LrovIv8C+D/LvD4p8F0RRNvpkzhJEa9Kq6TJfld+J1BeukUWVDYY2qaSvEXkdlV9Jnz4duDxVfvnERda36WxToHHiQs6bTX5OH3/HcSpIm5Dd7AQhnY/vxHlyltEPkYwgfh5EXmaYILxN4jIawnWaXsK+BtNndCuRuXrZFVaZZc+7zbSHGZ5tN1GRH4Y+J+BW1X1+ZTnfeDz4cM/UtW/XLWtItUm70rZ/AtVGyxLJPM+SWUxxeqW5f/79BnnUUXc8ai7bOrEzHGyGUTAddbzbUlEXkYwl/cfrdhtrKqvbaK9znSDz7zp1smuLtsky206l22kTLrEdFzuLD8L/I+krxzfOJ2Rd0Qk8b6IfBukuQ3nkEZbkWpTeW6T/+4V56OS5vD27jIvFpF7gIuq+rmcXffC4/8HEXlb5bOl47MK9iWlssk0Stc/u7KYDsrdQgBbCv0Oa60eD/w9gpRJHi9X1Ysi8s3AvxGRz6vqHxY5wSSdlndE16tV1iHtLn4uTQ9uaSOdkZX7brLjsi/fMrtO1urxIvKtwCuBz0lwoXgp8BkReZ2qPps4xsXw51dE5LeBbwN2V95xulKtss5/yHV8Bk0NjW+Luh2Uhm4i0v7EU6r6eeBCrM2ngLuS1SbhSPRDVZ2IyHngzwL/qGq7nct5l2VbcuTx8zDizqfJqLttcRfdN/metv2CZ6hPfPV44E8Cj4nI54DfAj6oql+oeuzeRd6ryJJm04Lb9IWi63RJ3Hltm5rvzbPuealU9RWx+4vV41X1/wa+tal2dkreWfRVtl2Mursg7jQpmyHzhnVj5N1TdlncVTsmi4rb0B0EsDu62EIevc957yJG3OUpK+60dtKOYWRvaAsTeRs2TtfEbegOInR2mbM8TOTdM7oWdXdZ3EWj7zhmYQZDU5i/JEMptrG8bZMRt4nIDZvCpE16xsybthZ9b1vE3aa06x4/XnliSgY3RzA8ftNn0Q5G3oZCNCXuLki7bBtGzoZNYOTdQ5qMvvsgbWhO3NHnUWbld8MGEXB62mFp5G3IZFvEvQ3ShuXPwxnYSwJPRt9m0I6hbYy8Dak0Ie6uSLtIW03n+6O5ypMXAUOzWNDZ1eHzMNUmPaXOkP+6orJtq5a4HdeuldcuG21XFXdye/I48fMwVSmGpjGRt2GJJsRdue2agms62obNl0b2dd6d9SFFF2PoHCbyNgCBpOqIqk60XSfShvai7SKfR170bdgdROS/F5EvicgTIpI6T7eIvFVE/kBEnhSR99Vpz0TehtrSrtX2GvPaRdtb9XlE7ze+vuaqvLXpuNwNROSNwD3Aa8LFFi6k7GMDPwe8GXga+LSIPFh1Tm8j7y1mPvNObLMct/Dri5QMVhF3l1IjZdssIu4i7aXVfZt68PUjKJau5TP/QYLFFSYAqnopZZ/XAU+q6lcAROTjBMKvJG+TNtky5jNvcVv1fBOUEXeUFqki7ihNUXV+7fitrTZXpUnS3reZo6R31Fo9HngV8OdE5HdE5N+KyJ9O2ecO4Guxx0+H2yphIu8toIqM468pE42XoU4Ouw5VV7Kp0m7eBaxwtG1K/rYUReazIjvWXT3eAW4Gvh3408AnROSbVbW1nJmR9wZpKoKuIvJVUWYV1p27rtNu0W8ceZ9FvF477bxMiqRfZK0eDyAiPwj8Sijr3xWROXAe+Hpst4vAy2KPXxpuq4SR9wZoStpZx64SiVdNh1Sh7hqRbQob8j8Lx7WYeSelnRV9p3VarhK/oUFUEX8t5Za/CrwR+C0ReRXgAs8n9vk0cKeIvJJA2u8E/krVBo2810ib0s4irdMyLrKy0t6EsOtE9WU7ZFd9Ho578jkjYUPI/cD9IvI44AH3qqqKyEuAD6vq3ao6E5H3Ag8DNnC/qj5RtUEj7zVRVdz+ZAyAPRyVaqtI9F2meqIsm4iuF69toYImKe6s6NuwZaiC337QpKoe8N+mbP9j4O7Y44eAh5po08i7ZepKO+1xGZEnKSO2sgLtSnQdUeTilRZtpx0nba6StLy3yYUbmsLIuyWaknbWPnUEDtniMsKOtZEjbhN9dwFF/ELVJp3DyLtB6uS0i0g7uX9ZgacJr6hA2x4ck/r6DcxsmCfsrBy3yX0b1o2RdwPU7YhcJW7fC3PebrVIO22EZSS0VXJte6mwxeu3YurZYqmR+P1VojY134Z1YORdk7ai7Uja8cdJgZeJvldJsomFeMu2WYbmVpgvf5yqZYNJzBwnG0IV1lMquHaMvCvSZookLm4/bMd23NoCh+Woe5W0ywwrr0PTw8yrCDqJGfpu6AJG3hVoqzPyRLQda8efeZkCL0uamNtYSWYbxZxF2XM1Oe6uUHh4fOfIlbeI3A/8JeCSqv6n4babgV8GXgE8BXyfqr7Y3mluB61WkKwQd3xbmsDzou9IvHFBRVF3kcV2V9HMwsLtRrrriqSN0A3rpMhf9UeAtya2vQ/4lKreCXwqfNxrqojbn4wLRdvJNMlSxJ04RvTcCdmntJPWWRmXdVLc0cx6aTPsxWcVLDLDoONahW9VyDqfMudYhWHqtxaTZtlWRBXxvdxbF8mNvFX1URF5RWLzPcAbwvsfBX4b+LtNnti2UFXahfbLibaXpB2LrqukUJJRdyTuuvNXNyWubckzp8k5iyKRthmUY2iLqjnv21T1mfD+s8BtWTuG8+K+G8A+OF+xufVTVtql67RLiDvvOJHA09IncTknOynTxJ09eKd8TnjdlBFv3XYmBYUcidtUmmwIVZiZapNUwslXMv8yVfU+4D6A4a3f0om/4DLiLiPtpLAX21Pas4ejzGPbsXlL4pF3JO6q83sXEXcZKa9Lpl3CROGGpqgq7+dE5HZVfUZEbgfSlvzpJEXFXaZGe+VxVrQXF3heOeCJiDuW7663bJl14hhFpDzqsbjHDQjYdGwa6lJV3g8C9wIfDH/+WmNntEGKiDtN2mVkXZaklLOi7irMpn5qJUpEXNxJYefJeehsRw67LJNZMalGqZMieW+TMtkk6ykVFJFfBv7j8OFZ4LKqvjZlv6eAa4APzPJW71lFkVLBjxF0Tp4XkaeBnyCQ9idE5PuBrwLfV/UEtoGq0oZ64l4VdaeRly6B5pdEi8SdlPUqOY/c7g0fGHvBP3ja+0oKfeTaJ6LvtJGWyRSJSZn0F1X9r6P7IvLTwJUVu79RVZMLNZSmSLXJuzKe+q66jW8Dq8TdVGok9fVrWJihzuhHx7WWxJ0mtSxJux2Iur0TQj5+L5HII5LvvWh0Dibq3jiq6HSytuZERAiC2e9su63uhUgN0pS41yHidUbdWeJOyjpL0qOG5jRpknFioqisc/dm85Uij4i+iZStOoHlfLeZwGprOC8ij8Ue3xcWW5TlzwHPqeqXM55X4JNhkceHKrYB7Ki889IkRVMk65A2lM9zpw3OKUpS3BEj1zkhvCxJ729RZ+VhKM0iF5Tx1F+8xygyj0Qel/jQsVZG30bI24PqHC1WEVZr9XhVjfr93gV8bMVhXq+qF0XkAvCIiHxJVR8tcoJJdk7ebYm7ynJledg5kXRTUffxZFXWic7JoWMtxJ0mwKSoN50ySaZDil5IDj1/8f5WSRxORuNpnZYmv90/Vq0eDyAiDvDdwH++4hgXw5+XROQB4HWAkXceVdIkZQfT1JX4KmFnpUuSRIsOx6tJIua+YtnCzPMTQ+UTUXWYLomLu4ioN1EiGO88LHPxiIs+em9xia/aP54Hz0qdRPlukzLZIOsdpPMm4Euq+nTakyJyAFiqei28/xbgp6o2tjPyLivupkZAFiEvwobV4k6LuuMCXxC+hUjaS9GhV24U5YkUylKKxWZgNR+BT+fpqYomLhgvXPfwZvMliTdBXXE77oCZ188Rgj3knSRSJvHV4wlGoj8Q9GniAL+kqr9RtbGdkHdVcafO7NeQtIsIG07muMukSpIRuO/PsW1rEXXPfQ3uN9jBOHJtTrsOp1KEWqZKIx2b6byd6o3BTRbPXT06WYUysBedna5jLTo0szoyszAR94bQOXPvaD1Nqf61lG2L1eNV9SvAa5pqr/fybkrc64q0V3VIVslx5wkcYjLxABcmXrloNtp35NrcvDfgpr0Bp12bo4QITyVOuS0RV2EyCz6Dq0dTrhxO2Xft2tH3zPNP5sKNuA0N0Wt51xV3k8KOSBN3kQqSOp2TaV+74wJPi76P88gz3ER78ZRJmrhvHjkMbXtJ1hM/W1rTDdRCDxKrCE394H3she8tLvB49J2G78+ZefPg59Rn5vkn6rvrSNukTgxp9FbeZcSdtuxYHXFndSaWLflLO06dqpKsPLg7chbbnJQp3qNUQrLDMkvcZ/cGDKxAjlF0PRocH9fXdFl7s3Yl7jrpy77ZIoynUYTswakhQKEIvEidt4m2N4iZVbBbbFLcRSiaGonT1ACctEqUeJQ48+alUidRiuSWfZfTQ5uzewNGjrDnWEznypBAmP5SikRIS3/v2e2kUqILSZxkUcrAshdyHzrHso0EDicH+uQRReIGQxv0Tt5VxJ1cuSbrOLVqqcPXpok7r6yw6flKkhG4w/GCAfEJqsaef2JouLsYbWlnivtgYOFYwjBMTczmCuH9eDYhTdTpsq+OnRB3XOTxzImv4MyA/WiAU/CZj1ybZy8HHV5RCWH0TSRrdsGoI9iwBcwLD9LpHL2Sdx1xx5/POk5ye1Gppua51yzsJFEO1RnYS52Xvj8HD+xRIOnJbM4ocSpJcZ/fdxkNLE65Fnu2cMq1sdRnLseRezxVEuW4h7YEYk/BT4mWy2CnvNyJHTPKedsSXVRi57E/WDw/sATOwrOXjwp1YLYlbZP3NiTpjbybFrcfKy+y3b3MNvMkm5bnbjs1UoajG0fsHewtasAjJuN4KZzH2X2XQ8/nzH6Q2z6/P+CU66SK2/YniHcDyw7ej9oDIo2r5TCwyRR7nCodmcmOyIhI0pYGcpX5sQjFn2LbA0657kL6tiSmGDgb1IJzCFcOPSazOZOwmiTqrDy64S2ibpMy2RJU0TWVCq6b3sg7i7rijh5nCTxJJOYiE0nF2YS4I45uHC3NhzLzfPYOXCbjWazUzePMaFloe46F6wgDK7iNBhaW+oG4j64BgayXdGoHx7Ds4z89Jyb5iEjyEXHZw7GE48h8BuHpih/KOVxcVvzYxcifnnjdfO80gz2HqSXYljCwYGjbDKwgdRQNOhpPfS4fTpfEPTmaLipMZp7P5KidCNlE34Y4vZZ3E+Iuwypxr0qTbFLcEZEUfH/OcDTg6IYXplIGHBLI6uy+y9kw8o7jWEGawhZB/BnijbHGy9MZq5Xxp+YEx1LbPd7HjrYdvyaK4hfEVvxeiDmUssxnwYrgsSqDtAn541OFWoC6Bwxsl4Ev+Jbihh2v12PfSrxYxD0Zz5ZKAyfjaevRthF4OVQVNdUm20uhxRQyxB1/bVzcs/B5p6B07eGoU9F2GnEpxDsufd9mOApGFSZHIEY4lhxH3eMrzC9/vXjDzgAZjrAGw2OBOwM0isgtBzjZ6bSQNMBsisxn6HSCTsbobLo8si7nH9gGJIy+h7ZwlDKA0pvNGXuzxTeSSNxe7PE6MAI3QE/knUY8qq4q7uj+KoHDsriLTh61beKOmHlTZt6UvYM9vPFsqYzw8uGUQ89fmmPEljDNYAsynyLeGL36PP6Lx8uarso56myKtX8aGY7AGWC5ewuZCyAJoQcneRxhR7JmNg1+h7MpOhkzP7zG/MbVE+3JqtGtB2cX0feeYzGe6SKHHr3ny4fThai98Wxj+W0jcEPn5Z0WdTcl7lWkyXcbOySrkpYHPxyl/7kMLAlTJlOs8RX8qy/gvxhE3pqcZuDIO3Hf3nNxTp1ChnvMnQHi7p2QORBsg0Xp1yK6jglbJ0fMrl/Hu3YD7+rhUtt2xso/9p7LPmDddDPW3hkGB7dgy8n68EPPZ+L5pmOyS+gcnZgOy07QpLjj1SRZnZZR1J0l7i4JO0kyDz7z5lwZTxl7PpPZnIEtobgJUyaHi6h78vwL+NPjyDAStR9O6BQ9nh15DM+ewnZfxD19sCRycQZoTOQcXoudXCBs9Y6Y37iGzjz8Iw/v2g3Gly7jXbvB4aWr2NECy8k8fbL+EbDPXcS56Tzq7uNY+zhhp2XEeOozCb+NrCO/bTCsotPyXlke2IC44885KXOLZIm7y8JOEv9q7o4cLh96S4NTHCvMd08PsY6CqHv6jecZf+PKkqAB5qHMZ2MP/2iKH8pvfOkyw3MHWIPLDM+ewr3pxkLk4rgLkUt48VTvCJ1NF1F2JO3DS5fxrt7Au3bE9eduMLnqYYfD8p3Yt4bBXnDfjo0gtQYDRrdexD53ARmdYe/MKSa+4jpzhk6w4LA3m4cdldshbpM6KYDqiW9/faGz8l6VLmlS3Fm13MkI2x6OeiXtOFEefDgaLCQWYVtBRYZcP4Qbl/FfvMT46y8y/vqLC0kDC1HPxjN8z2d6NAvuT+fYA4vRuUOGZ4Z4V2/gjFzc0we4N+0vJB6JHFiKsr2rh0wuX2d86TKTqxOOrk648dwhk6sTrk+CKN+1BDeMwCOJ24nHzshh/8Jz2Gf+CPfsrejoDLaMFvXhAJcPPY5ueFshbsN2ISKvAf45cAp4CvhvVPVEp4uIvBX4JwR95B9W1Q9WbbOz8k5SZj6SVeWARSpXIqKou8/ijjMLc75Bp+VxR6alPjIdozeuMr9xNRDqizfwp36qrIOfwXPe1Gf/piGTqx7Dm1xG5yYMzwyZjT1mRx6+N8N2nYXEgROR9uGl6xxdnTC56nHjuRtcn8x49sjnytTHtYSRbeFa4VqWh1NGYSekG+a03YGNPbDYv/B1Rrc+g3Xua1ijM5w693KuTOZLuW+zGny30Lku9bO0yIeBH1HVfysifx34O8CPx3cQERv4OeDNwNPAp0XkQVX9QpUGOytvy3GXRGsPR4UFbrt7SwJ3hqNF9J08blq7Eck5v/sscMcd4Lj2Yn3Lo9mcaxOf696cPdvm7MEt2DffwLn1EqfuuL6UKpmNw29AYaokKfTRuT2GZ4bYA5vhuYPMqFuGQdrEmRxh7wXRuXftBvsXDjm89CLetSOGN7kcXPU4e3XC5ctHK6Pu+LZTtx1w6o5bcW+7HefCy/AHo6WRn9GycO7IIaWIxWB4FcdrUT4CPExC3gTrVT4ZLsqAiHwcuAfYLXmnEQncdkf43hjbcfFn3mJ7XMxFBW45bmqpoD8ZL6VO4heOvknccQc4AxvLlqWZBqdzZTydc+RaTPYO2Budwb71DvYOr3E6zG/HOyrjOfBI6v7RdCFse89dknZavhtAnQGD4R7O5Aj37Cm8y9dxb9rHu3rI/oWgo3JyZcL+i7Hfb6JSJsp7R9z08psZ3XoO69wF1B2h7v5ieP5eOMLyzL7LcG/AcG9gqky6ghaOvM+LyGOxx/ep6n0lWnqCQMS/CrwDeFnKPncAX4s9fhr4MyXaWKLT8k6LkosIHIL0SJ7Al46bMTzeX1wMjkVeZM6TrhCJ27Yt9g6C9xRNkTqZ+Ux8n8nMZjyd4546jzM9xL76AvtheVbUWbSQ+JG3qELxw7SIe9M+9mCAe/bUCWEvKk0gKBuEpfJA9Y7YO7gJ98bVRTplEZG/eCPzfSWrT0a3nmNwy3nscxeYD/aDofqxDMlp1+aWA5fhyMEdOceLCxuB94XnVfWuVTuIyG8C35Ty1I8Bfx34X0Xkx4EHOTFbUPN0Wt6wOs2RJfD46yIpRxKPCzyPePQdnxfcHo6WIveuEhe34wY/oylio0ErU1858ucMfcGxBpzeC6JvYGkqTtuLZD4NnzuWuzgu1sHpk/XdsBiwA8GAHQCJDcyJRG7tn8b2jnBOXVvIO17nnRd9jW4Jz3t4APYAtRxm00DQ0UCdM/sDzp5yObzuLkl7UwI3lSb5qOpSyWrNY70pZ5e3AIjIq4C/mPL8RZYj8peG2yrReXmnEZd0EYEH++2lCtwZjnInpfJn3tLQ+LjUuxiFJ6Vt2YLj2jiuxSg20GUym3M0m+PNlImtDCxl/+AWZDrGhpPzKMeGqC+Grs+mJ0ZWQvrIykUg7I6Q4QEynwVzkoQynx9ewzp9DnsyZnB4jVGYnE6KO03ke3e8BPvcBXR4gNpOOBHWsZSHjsXItTm77/KNkbM0fYBtW61NRmXoBiJyQVUviYgF/E8ElSdJPg3cKSKvJJD2O4G/UrXNXsob8gUOrMyD5w2Jj4hEHe+8tN1Y2x2LwjPFHW5LMp0rE99nOg9Wzjn0LU4d3ILte8jB2eWdY/KOMucynwWSjk1QBTCPT2RlJ6ZnBfCni8mmxPWQ4QHOqbMLkduzKfNwUI8TjchMRP9w/A3APncBGQyDdsNziBeWDB07yHuPBuyPBkzsY7FbYWRuBL7TvEtE3hPe/xXgXwKIyEsISgLvVtWZiLyXoDPTBu5X1SeqNtgLeWelTlYJPP78qo7MKvjeeJEDT0bh0fluI3niHiaWRYvKBae+4qviz5WJr+wNT8HBLSvbik/RGp89kOTsgSxPFRu8Nky9wPKUr3Gh+x5OmMqKz38Ciag/xLrpZtQdBSkTe7BUaRKMspyx51ic3R9w+9kRlw89LgOOay3NfW46MrcLnc/XUiqoqv+EoH47uf2Pgbtjjx8CHmqizV7Iuyh5AoeTHZlF5vFORt+24y5y4MkoPGpj2wSeJ+4gZRIbKu75nHYdJjOf066NN1Nm4RqU1z2fU6ObGzu3uEhtEbCD3LelPgzCNEtsylfxp4HUD5alHs1AaMdmIIQgvWOdOsvcdlHbQS3nxEIQ0ZzlN59yuXx4LP2l0aaujReK3Ajc0Da9kXeR6BuWBQ7kdmRWIZ4DXxWFb4PA06QdbF8Wdzxlcuj5uI7F0SwYwHItFFiwgG+434rlwLLGuWQsgpN+3pZAuMzDwBawwikLQrnHF2sIxD1NjdIlTO8ooIMR6h4wxWI2D/L5R/6c696M6VwX3zTO7h9/Exg6xxeNdebBTWdlQfR4Pp2+0Rt5ryJL4EBuR2acIsPky7CtaZQ0cQ9dO1yQePkfYXpq+dxv3h8AVuUFhJMLBmcxiB0+vg7m8TqVcrxOpT1cEnokc02ssjMfncGzXK57gbivT+e8cDjl+UOP6+HFaGAF30C82TxcTd5hEk4XcMgU348t79ZiCsXMa2LolbxXlg2mCBxY2ZG5ilXSTltwOCI5uAc2E4XHp3stQyCq1ZHMzfsD7HnVBYTD8rwcifvW8sVhIX1fF6+d+LqI5qNIPYrS7YTM1XKYYnHdm3Pdm3N14nPdmy2JO47rWIvV5KPyyYnnL6LvWfx+iwIP2jISz2JdOe9N0Ct5QzmBw+o8eNrrqxBPnWSxToHHxR1Pmaxi4vlLHZbjlK+iQVoheA+nMubOLsqYKA2TzsmLQ0zaKE6sMMa2ZCH1k0KHge0y9ZWJfyzu5w89vnHoLc3hkmTftRlPfUauw2TmMXTtYM1PL/j2Mvd1MVSjzRy4icJ3k97JG+oJHJbz4HXSIllkHXcdAl8VcVsZSWffny+iyKiDLoo2r4ynYfqAYD41AFyOUpZL23NOlhquYuCvjr7jc20D+HHZ+8RmBAzFHUb10WlE0frAl7Cjdc54Ol8p7j3HYhqmkABGgyCFEo++cYOl42aeH1wU1yRwMFF4ElVdzLPTN3opb8gXOFAoD75u2syDV02VZDH2ZoxcB28255krYfldKPBTKZF8fCHfobM60o9YlT6ZOgm5esejIeMMbXuxAqbrSEzsx1KfzpXLR1OuTfzciBtYVN5EnbdB7juIvicei28zSYGDkbihGWrJW0SeAq4RDEWb5c0NsG7yZggs0pHZFMnUSbJ8MEmTUXiWtJ1BMYGmMQmjzUjgAM9cOQrm+j67t4i8s6Lt4w7A/Nz4MPMY2ReB+HGv4R+fR0LwUfQ+8X1eGM/4xmG533mUOomf58TzcVxr0Xm5boGDSaUsUF0sAtI3moi836iqzzdwnFaoInBgKY0CJ6d/bYpVqZkmBJ4m7ri0k6Mmk7nvmTfHcZf3GXs+I9deCByCldVdx+IbN4LP6UxYThfNnjpakVMfWKvTKaui4Ouen3kBiEs/ivqTsh+E83xP51pY3APLApel1EnAyeg7YiFwWEsaBUwU3nd6mzaJU1bgsByFA62KvC2B54m7LMlOy4h4+iQS+KHnL2YfBLgSDmxxM6LoVXK/mvM8pF8ArsWqRKLIO1k5Eok/L02SRjx1EhG/YESdlxGzcL915cEjjMT7SV15K/BJEVHgQyXnv10rRQQOJ/PgEUVFvrJMcEXVSdMCLyPuvEqTNJLRd1zgi31iYoqi07jo4nL3Eh2cScmPE9JNynxMugSj/abeyQ7UgWVRd13x5HnHse0gQk9ODrqJNArspsR1rovFQPpGXXm/XlUvisgF4BER+ZKqPhrfQUTeDbwbwD44X7O5euQJHFaUCcbSKUvb4xUqebXhOeWCTQm8qLjTJppaOp9YlUl0fxJVm4QVF5HAA4LywaTEXcdaEjkEMj/MGIW5Hw6CaZtI+HlRfRovXPfwZnMOPZ/xNFjXc+zNFp9FdMyJR67AfX+OM7DXNqR+FyXeR2rJW1Uvhj8vicgDBMv8PJrY5z7gPoDhrd+y8QUA6wgc8iW+6jVFaDsHnsdSbnaxbR52wB3LPEqhLPK+iSg82Bb8eaVF1UmZR6ySekQZuUepnFVEF6GiRIswZ4k7Dce1FqIOHtsbFfjOMNfFIth9o7K8ReQAsFT1Wnj/LcBPNXZmLRKfhCqLvDUxkznxrH2q0FZ9eRlmUx9nYC8JGzghcEiPwuMSj5OMyiMiwWZJffH6AnJPksy/p7HqYpCUf1lx23Zw4YsEDuHnawTeG0TkHcBPAn8SeJ2qPhZ77keB7yeoyvtbqvpwyus/AvyXwJVw019T1c+uarNO5H0b8IAEAyEc4JdU9TdqHG/tVMmDLz2fFYVXlHYRmoq+81ImSeJVJ1H0mJR4xHIqJSDqyEsKPSs6b5roojCq0GGbdrEoKu6ISODRfUgXeBwj8foEK+ms5XN8HPhu4EPxjSLyaoJFF/4U8BLgN0XkVaqadlJ/R1X/VdEGK8s7XAH5NVVfvy0UTaNAvsSbZBui74hk9B3fDqxMpUSkCS4rOs8iK2ovQ5E0StHj5In7OO8dnzbWYubNT8x7Ek3BG82JEkXh8X2axtSCN4eqfhFA5ETZ6j3Ax1V1Avx/IvIkQXr5/6nb5k6UCuZRROCQL/GmaWoYfdXywCh1snjsRfnaZfnFJZ5MpaSxkFoJEZcV/SrixQejinOwFI24gbDu219Kn8QFDkFfQyRwYBGFm1RKPYJqk0J/N3VXj8/iDuA/xB4/HW5L4wMi8n7gU8D7QuFnYuQdUlTgsF6Jb2IelLROy+Xni0s8TlQjniX1NKqIvgyT2O88ayTnyddUP5ciAp/7uvYo3FBv9XhV/bWa7f8o8CxBbdJ9wN8lpw/RyDtGGYFDdYnHV9kptH/DKZSy+W5IT50UkXicNKGnsTx74fpklfdNoQqjaB70MPpO4+TnGhvMAyYK3xIKrB6fRqEV41X1mfDuRET+JfAjeQc28k5QpBIlSR2J18mXr6V0MJY6yZJynsTTWHUBKSr5dbAq/ZNHnvSj6HvxOBRzFHWbKLwBFPzN/j09CPySiPwMQYflncDvJncSkdtV9RkJkuZvI+gAXYmRdwZlo3DILy+Ek5Up28Tc18W0sKtSJ1kdmFkSzzpGHlW+ITRNlQtJMj0UP0b0vqPPqsjnkEYT4jadlc0hIm8H/jfgVuDXReSzqvrnVfUJEfkE8AWCUWzviSpNROQh4AfCRYp/UURuJVjb77PA38xr08h7wxSNvptMnWTJN4tkx2V0DEgX7CwxFL2IzNOoKrZ1kvb+04TflLSbYlfErapMj9pfw1JVHwAeyHjuA8AHUrbHV5X/zrJtGnmvoEr0XYW66ZM80uS79Hwsys6KvrOOsUrix8dPF1VVqW8TRSWcJ+14JB3lvOfhSs2zBr/274q0dwEj7zWyKmXStsDbpojEk2RJvY+kSbts6qNutL6L4i5RKtg5jLxzWFf0XYR1pU5WRd+wum68isQ3RRupi1WDmSBf2Mmouyl2Udx9x8i7AGVrwKvWf28y+s6r7V7at4TEV7FK8JvOCVelToSdlh5J3VYyYt9lcauCP+3m31IeRt5bRlmB1ykXrBJ9x4lLpMooznULeltK6/Jy2GlRd1cvZob2MPIuSN30yaZLBPM6LXNfnzfqskA03gSbEnCTnYbrbHOXo24wOW/Dmqm64k5dkoKOR99pz6ceo6LE1yXlTUi4DHm57m359mDYPEbeJdimzsumSKZO8uc1KZYb37Rk1iXppjsWI6LzL9PZefIYux119x0j7y2ljc7LKqmTZPQNKXNvbJC2Jd2WnFdhxN0g65vPe+0YeRtyo+80gUf7wXok3qakNyHoNGYpw+hh899iDNuJkbehNm1IvC1Ztynqps65rrhN1H2MzjEdlobqVK002WTqpGj0veo1hc+pBVG3nYtuCyNuQ1GMvA1A1nzd1QS+btoQ9Trex6rabSPuZlBVvJ6mnbZ/DPOOs+n68CRzXzeWI47aTt7qMPP81FtdfH+ee8s8p57Kps+IyDtE5AkRmYvIXbHtbxaR3xORz4c/U2cPFJGbReQREfly+PNcXptG3jtIlhxSh3ZniGxdEm9K0pAu6jpUEXPuOVYUt4m601HAm2vurQGi1eMfTWx/HvivVPVbgXuB/yPj9e8DPqWqdxKuYZnXoEmbbAB/5mG3vALOuiiSSil7vKZoMvXR9PD0JqNrI+7Nk7V6vKr+v7GHTwAjERmmLC58D/CG8P5Hgd8mWMcyEyPvhik6KVWbAp95Uxx3sHqfEjXfeR2RTQi8KWk3naveZmmDEXeDtLV6fJzvAT6TsSr8bbF1LJ8Fbss7mJH3DpO1Qk6V6VyrCHxXomxoJ49txJ3PXGFc7O+s1dXjReRPAf8QeEveiaiqikjuSRt5d4CuLNRQVOC7EmVDe52PRtzrp+Lq8YjISwmWSPurqvqHGbs9F1uE+HbgUt5xjbx3nKLRd9Ua7jhNdTo2SVtTrbZZMWLEXZw5WjTybgUROQv8OvA+Vf2/Vuz6IEGH5gfDnysjeTDVJoaGSQq6brVI0yV8EXWrQrKYTX0j7h1ERN4uIk8D30GwevzD4VPvBf4E8H4R+Wx4uxC+5sOxssIPAm8WkS8Dbwofr8RE3htkW6pOqo66zKKJ2us26GKUbaiHKk2VAua0k756vKr+A+AfZLzmB2L3vwF8V5k2jbw7SJE5vYtUnKxso2LHZRXWOeS8SdYtbRN1G+IYeRuA5qPvQm22KO2+CHvRrhF3JebAuKdLyBl5GzLJir7rCtxIu2TbRtyGFIy8W2bb5iYpw6q0SVzAhVed76C0wYi7y6wr570JjLwNwMk1J8vku1fN573p2fnqYjojDduKkXdPKdNZWUfccTYxHWyfxW2ibsMqjLx3nKbEvQmMuA15zFGOepo26c5/qqFxjLjTMeI2dAETee8oRtzpGHH3i2Biqn6WCtb6jxWRt4rIH4jIkyKSO3m44ST+zFt7m10Vd1tD2iOMuA1donLkLSI28HPAm4GngU+LyIOq+oWmTs5QjVWdlW2LO02uddtoU9gRRtz9JFpJp4/U+a96HfCkqn5FVT3g4wSrQRhWsIlIO6JNca+KiqsuEdZ2pB2xaXEbDFWok/O+A/ha7PHTwJ9J7iQi7wbeHT6cfPUX3vl4jTa3nfMEa9b1lT6/vz6/N+jm+3t53QN8He/hf6ZfPV9g1659Nu13WIZLCd0HICKP5a1W0WXM++sufX5v0P/3l4WqvnXT59AWdb43XwReFnv80nCbwWAwGFqmjrw/DdwpIq8UERd4J8FqEAaDwWBomcppE1Wdich7gYcBG7hfVZ/IeVnTqzFvG+b9dZc+vzfo//vbOUS1n2U0BoPB0Ge6MTrDYDAYDEsYeRsMBkMHWYu8+z6MXkSeEpHPhytDP7bp86mLiNwvIpdE5PHYtptF5BER+XL489wmz7EOGe/vJ0XkYmyF77s3eY51EJGXichvicgXROQJEfmhcHtvfoeGNcg7Noz+LwCvBt4lIq9uu90N8EZVfW1Pamk/AiTrY98HfEpV7wQ+FT7uKh/h5PsD+Nnwd/haVX1ozefUJDPgh1X11cC3A+8J/+f69DvcedYReZth9B1DVR8FXkhsvgf4aHj/o8Db1nlOTZLx/nqDqj6jqp8J718DvkgwIro3v0PDeuSdNoz+jjW0u04U+KSI/F44HUAfuU1VnwnvPwvctsmTaYn3isjvh2mVXqQUROQVwLcBv8Nu/A53BtNh2QyvV9X/jCA19B4R+S82fUJtokF9ad9qTH8e+BbgtcAzwE9v9GwaQEROAf8a+NuqejX+XE9/hzvFOuTd+2H0qnox/HkJeIAgVdQ3nhOR2wHCn5c2fD6NoqrPqaqvqnPgX9Dx36GIDAjE/Yuq+ivh5l7/DneNdci718PoReRARE5H94G3AH2cOfFB4N7w/r3Ar23wXBonklrI2+nw71BEBPgF4Iuq+jOxp3r9O9w11jLCMiy7+l84Hkb/gdYbXRMi8s0E0TYE0w38Utffn4h8DHgDwTSizwE/Afwq8AngPwK+Cnyfqnay0y/j/b2BIGWiwFPA34jlhzuFiLwe+HfA54FoQvS/R5D37sXv0GCGxxsMBkMnMR2WBoPB0EGMvA0Gg6GDGHkbDAZDBzHyNhgMhg5i5G0wGAwdxMjbYDAYOoiRt8FgMHSQ/x9bpq8W/hxB/QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.contourf(ag.reshape((nz, nx)), 100, cmap=\"RdBu\")\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For connected structure" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "foward value 0.06833918047665405\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAALy0lEQVR4nO3dX6jehX3H8fdnSWbxHxi6hdQ53IorSGnT7WAHleFwbZ036o0sFyVlheNFBct6MfGmwijIaN1uRiGiNAPrKFWnF2XWiiwrjNJEUo1ma0pJqWlMEAtGBq7qdxfn585pOCfn+XtO8j3vF4TzPL/n98vz9cePt09+z/P8TqoKSVIvv7XZA0iSZs+4S1JDxl2SGjLuktSQcZekhoy7JDW0btyTXJPk+SSvJHk5yT3D8vuTnExyZPhz6/zHlSSNIut9zj3JbmB3Vb2Q5ArgMHA7cCfwVlV9be5TSpLGsn29FarqFHBquH02yTHg6nkPJkma3Lqv3H9j5eRa4CDwUeBvgM8DbwKHgC9X1a9W2WYRWATYxrY/uZQrpx5a0ub4o4/9z9jb/OTFS+cwydZyll+9XlW/M842I8c9yeXAvwNfraonkuwCXgcK+DuWTt389fn+jiuzsz6Zm8eZT9IF5Jlf/njsbT77oY/PYZKt5fv1ncNVtTDONiN9WibJDuBx4NGqegKgqk5X1btV9R7wEHDDuANLkuZjlE/LBHgYOFZVD65YvnvFancAR2c/niRpEuu+oQp8Cvgc8FKSI8Oy+4C9SfawdFrmBHDXHOaTJE1glE/L/ADIKg99d/bjSJJmwW+oSlJDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1NC6cU9yTZLnk7yS5OUk9wzLdyZ5Nsnx4edV8x9XkjSKUV65vwN8uaquB/4U+GKS64F7geeq6jrgueG+JOkCsG7cq+pUVb0w3D4LHAOuBm4DDgyrHQBun9OMkqQxbR9n5STXAp8AfgjsqqpTw0OvAbvW2GYRWAT4AJdOPKgkaXQjv6Ga5HLgceBLVfXmyseqqoBabbuq2l9VC1W1sINLphpWkjSakeKeZAdLYX+0qp4YFp9Osnt4fDdwZj4jSpLGNcqnZQI8DByrqgdXPPQ0sG+4vQ94avbjSZImMco5908BnwNeSnJkWHYf8ADw7SRfAH4O3DmXCSVJY1s37lX1AyBrPHzzbMeRJM2C31CVpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDW0btyTPJLkTJKjK5bdn+RkkiPDn1vnO6YkaRyjvHL/JnDLKsv/oar2DH++O9uxJEnTWDfuVXUQeGMDZpEkzcg059zvTvLicNrmqrVWSrKY5FCSQ7/m7SmeTpI0qknj/g3gw8Ae4BTw9bVWrKr9VbVQVQs7uGTCp5MkjWOiuFfV6ap6t6reAx4CbpjtWJKkaUwU9yS7V9y9Azi61rqSpI23fb0VkjwG3AR8MMmrwFeAm5LsAQo4Adw1vxElSeNaN+5VtXeVxQ/PYRZJ0oz4DVVJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaWjfuSR5JcibJ0RXLdiZ5Nsnx4edV8x1TkjSOUV65fxO45Zxl9wLPVdV1wHPDfUnSBWLduFfVQeCNcxbfBhwYbh8Abp/tWJKkaWyfcLtdVXVquP0asGutFZMsAosAH+DSCZ9OG+2ZX/547G0++6GPz2ESSZOY+g3VqiqgzvP4/qpaqKqFHVwy7dNJkkYwadxPJ9kNMPw8M7uRJEnTmjTuTwP7htv7gKdmM44kaRZG+SjkY8B/Ah9J8mqSLwAPAJ9Ochz4i+G+JOkCse4bqlW1d42Hbp7xLJKkGfEbqpLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpoUl/E5OmMMlvOboYdP3v0nT8rV6bw1fuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkN+zn0TXAyf4fWzyVqNx8XFw1fuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDU11VcgkJ4CzwLvAO1W1MIuhJEnTmcUlf/+8ql6fwd8jSZoRT8tIUkPTxr2A7yU5nGRxtRWSLCY5lOTQr3l7yqeTJI1i2tMyN1bVySS/Czyb5L+q6uDKFapqP7Af4MrsrCmfT9Im8rcqXTymeuVeVSeHn2eAJ4EbZjGUJGk6E8c9yWVJrnj/NvAZ4OisBpMkTW6a0zK7gCeTvP/3fKuq/m0mU0mSpjJx3KvqZ4An4CTpAuRHISWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWpoqrgnuSXJfyf5aZJ7ZzWUJGk6E8c9yTbgn4C/BK4H9ia5flaDSZImN80r9xuAn1bVz6rqf4F/AW6bzViSpGlsn2Lbq4FfrLj/KvDJc1dKsggsDnff/n595+gUz9nJB4HXN3uItWzbPclWxyd9ugt6X2ww98Uy98Wyj4y7wTRxH0lV7Qf2AyQ5VFUL837Oi4H7Ypn7Ypn7Ypn7YlmSQ+NuM81pmZPANSvu/96wTJK0yaaJ+4+A65L8QZLfBv4KeHo2Y0mSpjHxaZmqeifJ3cAzwDbgkap6eZ3N9k/6fA25L5a5L5a5L5a5L5aNvS9SVfMYRJK0ifyGqiQ1ZNwlqaENibuXKfhNSU4keSnJkUk+4nQxS/JIkjNJjq5YtjPJs0mODz+v2swZN8oa++L+JCeHY+NIkls3c8aNkOSaJM8neSXJy0nuGZZvuePiPPti7ONi7ufch8sU/AT4NEtfdPoRsLeqXpnrE1/AkpwAFqpqy31BI8mfAW8B/1xVHx2W/T3wRlU9MPzP/6qq+tvNnHMjrLEv7gfeqqqvbeZsGynJbmB3Vb2Q5ArgMHA78Hm22HFxnn1xJ2MeFxvxyt3LFOj/VdVB4I1zFt8GHBhuH2DpYG5vjX2x5VTVqap6Ybh9FjjG0jfgt9xxcZ59MbaNiPtqlymYaNhGCvheksPD5Rm2ul1VdWq4/RqwazOHuQDcneTF4bRN+1MRKyW5FvgE8EO2+HFxzr6AMY8L31DdHDdW1R+zdEXNLw7/PBdQS+cJt/Lnc78BfBjYA5wCvr6p02ygJJcDjwNfqqo3Vz621Y6LVfbF2MfFRsTdyxSco6pODj/PAE+ydOpqKzs9nGt8/5zjmU2eZ9NU1emqereq3gMeYoscG0l2sBSzR6vqiWHxljwuVtsXkxwXGxF3L1OwQpLLhjdKSHIZ8Blgq18p82lg33B7H/DUJs6yqd6P2eAOtsCxkSTAw8CxqnpwxUNb7rhYa19MclxsyDdUh4/t/CPLlyn46tyf9AKV5A9ZerUOS5d/+NZW2h9JHgNuYulyrqeBrwD/Cnwb+H3g58CdVdX+jcY19sVNLP3Tu4ATwF0rzju3lORG4D+Al4D3hsX3sXSueUsdF+fZF3sZ87jw8gOS1JBvqEpSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkN/R9ca/7t4LggZgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAD4CAYAAADfPUyRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABpTklEQVR4nO29e7As213f9/31Wt09M2fvs8+Vjl7BGPkBRQhJwIVjUn7J4BDFITziFBYUCVSUiKTAsQ12WTh2TJxKWTbGNlUQxzKmBC7zMja2khBhSoYSSjkUMiEBQ4wpR8KSr3Tvle7eZ5+zZ6ZfK3+sXj2rV6/VvXqmp6dnn/5WnTp7Znq65/np33zX70FCCMyaNWvWrOkoOPUDmDVr1qxZdc1gnjVr1qyJaQbzrFmzZk1MM5hnzZo1a2KawTxr1qxZExMf82DEF4LiyzEPOWvWrDOVuHvlFSHE6w7ZR3D16QLZxudYPyGEeOshxxpSo4I5WD7C6vO/dsxDzprlrWy79tquyJIjP5LhFfDIe1seL4/4SPz19Ge+4yMH7yTbIPzsr+jcLPn573l88LEG1KhgZmGMh5/2WWMe8t4oT/ygMWunvCdAcweYTRDnyQbZdn02gA54hPjyBev1NrE9wMx6gN9XTwff4/lo3IiZh7h4/PoxDznrBMrzYtTjZUnqva0LvoANwPVtFegDHoFFC2xvX508nKMHV2DRAuGDq+o6E6IsqoO4LbreB9o8CnvfBwA+sde9TFGvXwtT0bgRMw/w8PFqzEPOmpCyJB92f6k6AcSt2xWZfqJYlfdtPhZ1QlGgVzBTMA9Rwnt1heTuRt6WbJA8u9nzGRxX0YMrhKuHYPES0eqqASgdsjo8GWvmBPCQWY8RcP/8AR7OuQa+Gh/ML0zDv5p1WtnA2Ed51t1KwDyGLZLXTxYK9EUW1u+/jGv31SN0BbspwVlZFwGPSjhfgcVLJ3wVdBVkdYDyqAlkG7j1/fiIcfLe9hBREEzGM++jUcG8CBk+6197OOYhnxutB45Gx1KS9X/cdy3PNcma8N0a2zeAXUJeXZ/nBbIkR7TkWlS+i7wlmGQEmt7tgDwF31lBOXxwBcYjhKsrxJcPwVjgBLCCrwKu2s4GTx2+sQXaSlGPSHrVsp/nVaOCOeIBPuO1s5VxDrIB7ljqc1JxQTlx+Nr6vvWTgLmfJCuwTfIdnDOBLM0RL3WLQ96mwJbrEWi8RPrs5qS+s+4nK+sivnyIeBEiWsqvuh4B67BmnKq/FXB1uJrwjPju8rIN0I7o2tSx4ExEYNHiKPs+psYFMyP8xkfn97NiVlObgRf4tp4nAhuAbWDXTyz67TqQ9X2tkxxJlle320AdL0JkaQ4eKcujACB/ATINxmP7zgGPwOMlwtXDEs5LhA+uEC9j8JAhWnLES3kSMaNhHjLEEUPEgwqOEWc12Opw1QFqAtkVJbeB25QvyO+7RgVzyAK88bJ9oWbWecsXsKbSotsz3lj2neWFWs/bbacBV388CsT1KHp3XQXlvHCCmnFCngkwFmC7ll4zY4+wXW+rfY7pO7v85HgZI1qG4GGAeBkiVhGzBmJAglaBOGI7ONfAXG5rg3VsgfHCtnjYA7iLHjbIfdWoYOYB4Q0PZjAfW/lEemz3hbQNvLrSon673D8zthG40PZ3EZXwVtflBS5j3gB2xAMsI4Z1kmMFCakkZ4i4BPQqYrjjAZKMVZ51nhfI0gIcQJ6HyLdRlYpWZAmCETxnHi9l+l68BIuW1SIfD1kFZfl3PTJWVoQO5KVmYVR/WwCswKtgawNpGDT9aRvEbQqDAcFMwZwu16WACPFIq7HPt477GvuCP+b2n7Cu9b6VtrDkOoYO1MuoCXMd3goOaSG/6JuswAULkOVFBZdNXiDmQQli48SQALB8pxWYpUcb1GwTFi17F7YMLcaCWhob49SAsg5eBWUF5IgFFUT16NcEsXp9bcA14doVBftC+3nRyGAGLqL5DZiCxqgByVz2hIXXTStDfulNQMec1cC+ClljGwVvBW4FaxeoAWDBCtxsM1ytwrpnbYFzkhXI0hxZmTUX8ACMBWDx8mQLf4xHjciQR6yKlk0oq0jYBuWruLQ9OkCs4GtC14QsI3ug4DhvDyoi2qso5tQaN4+ZgIs5ybxVTpgNrQG+FHnnQ21+IV1ecqxA3HLCqF4bZu6HanBmpKV08aACdRgU5WMwQS2wAXAVc+ui5gpMes0l9x6tZNScZ6KyM6Yi3cZgLKii5TYvWUH5MuZYsACcBVjwoGZH6DBWIFbXmeA1gavfbrM4rM/Dc7v7qnG7ywEIRTbmIc9O4Yk/jwXbr3zWptwC4Zg1n2DtZFR+qe3QpwrIMagGcXMfartc7ECtQLLNCmyyAmEUIC0KxJDASIsA2GZAzBGxADdro9Rbi57jiCFL88rOKDJW85nzMlMimUDJdsSDBpSVlXG1CivrYsECXMQcYUDOqFiHsQJwG3h1wHat//lCu5coOEofj2NrVDCjyEDr6VRI3Usd+CFkab9mSSJwf4Ss30ML+NXJyHVS0AEfM6pFzjuAUy2K5oXcaVYIpLSDdJZL+0OHNCCj6adJhouYg2cFgAxXy7DK0KhUwjniAbYhQ56JKjvjVNIX/pS/rNsYlV3h8JOvYl6Lki8i+Z7qMFbw1WGsQOqCrwlayzn5uY+MXRoXzEIg6PnFn9VTA76+wiN6bvtatUG7knYiUScF834BUAN6SDuI69DWv/h5CYi06Ib0zgbh2uIhr3znxgJgIr3ZJCuwXWfgEUOWFs5S5WPKVjxh2hgRt0NZty4uI3myUlaFD4zV09UBrL8HdWDXPylBXp7MXHZYPszJThaYzB5zq6jIEcwR88nkA1pdvrGMYPaPUeP+zBLNKxhrj03dzwr2EuTqi61D2wZsRk1IZ4VACKpBmpEE080mw0UkYXObuH3niMtUOsZpl52xxm4B8AS9M5S/DKC26LeMWA3KV8vQal2EQYCrBW/YFC4YKwgrAOvwDfJ0B10NslR0WJkTsH5cIqK3AvhOSMPte4QQ7zJu/wwA3wvgdQA+BeBrhRAfLW97H4AvBPBBIcSXdh1rVDCLPENx88qYh7w3ovi0ZaXUUtZKruCmAdZ6NG+FsQb56muuAz1dQ7AQBAPcDmAzHlogLW0PE9LbDLhaqBxnCRCX77yMGJKM4VazM3jIoLqKsniJ9O6J44UZXiojQ9kYtUU/JuGs+8kXEa9ZF3qUHHM/GCsQV9Fv4gBwCds2KNNAEXJzx8PkMRMRA/DdAP49AB8F8HNE9F4hxC9rm/0lAN8vhPg+IvoiAH8ewH9a3vbtkKVQ3+BzvJE95hzFiB/WeyXtdWuD5LFE2+7xPI37tJxMKFo0v6gBb3xBBQuBPNMuc1CeACyqthUsBJIMIuAglBEXjyAgoRGwsIqkOcqFwoAQBjKKznfuRcngAJssUBtL/7XcZFlaGFXhRcQqOyNZZ+BRiPRZ75dqLyngqMUtZaWo/9Wi36qMlPVFPgXlmAdWKHcBOchTIAeQp1YIA3UQV+9r7o6IKZ90YsC/A+DXhBD/AgCI6IcAfDkAHcyfA+Cby79/CsDfVzcIId5PRG/xPdjoHrNIT7tQch809GtIYbfFIRI3mF0nCqF/SY2oRWigNwGu74+KrBZ5U55WsFbRNZm3ARAZJKQVoIH6wmMhkAvljwpUUTST54EFD4AM2KLAggfYAEAugaxKlGX1XFr1nbD1Jj511dkyqpdYK08ZQGVfAPUsCwVlFTUzqtsVVYSsoGyBce0Eq8HYBt+jRcv99JiIPqRdfrcQ4t3a5U8D8C+1yx8F8DuMffzfAP5jSLvjKwFcEtFrhRCf7PtgRo+YxRwxH189YdAGXVM2CLtOFDrwzWPo+1EAV/BW0HYBuwHiFkiLDCCOHZyBHaDVwmEJ5zAgoJAgklGzrApEVmADCTWVxbGKGG7WKSIewAyQTwnjqpWnVkWpoKwXfijoqmgZ2PnJNijXbIsSpArKbTDWQdwAsMPa6PN57BIFgW+ByStCiC848HB/HMB3EdHXA/gAgI9B/q7orXE95iJHcXs95iEnraP5xnt+sH0sEuFanLHASP+CmfvWYa4ArrZX24osqUXaYrupXjMT0pUskNbhDNijZwSEPEAVNSOnRtT8tCzfXkYMN3cplhHD9Z3cxSkyMnTZ4KN3glPWi0qLA9CIlpWF0eola1FyA8htMNYg7AKv2MMuG1EfA/Dp2uXfUF5XSQjxryAjZhDRBYA/KIS43udgo1sZRTaJny3T0EivRcD9sjF8vxjWE4rly2aLigE0IC6STX3bNO2EtQlp0/IAlEGhjl/COeBAnlrhXEWKBZBB1KLmNMkrr/kWMgq9LhcC5aKfBM+pAQ3Uo2W9jabqe2F6y8CuSIQFftYFFZmEbk8Y2z5jzpP9ACKivWcOGvo5AJ9JRL8JEshvA/A1xrEeA/iUEKIA8K2QGRp7aeSsjALpk7sxD3nvFET937Ic/T/4bNHyc9xxQjFPAE4f2RJJV19OZWeYQNZg7VIVRWuQVnCmPIVQ12u+c8FCsKDMziijZgDImahFzWEg7Qyg2Z/49k4BWqbMKbFogaxl+OvQMqeLqA5ykQZgn2i5AWWLdaGgrIDsA2MTwM7IeYLrUEKIjIi+CcBPQKbLfa8Q4p8S0Z8D8CEhxHsBvAXAnyciAWllfKO6PxH9DIDPBnBBRB8F8HYhxE+4jjeylVEg22y7N5zl1gCvH190t14tEvcKuevkYJ4AanDXYK4DvOEnm9FzltRgTdGignR1uSWKppxDMGlv2KwNhVge8CpqzgoJrEbUXPbUiHlQZTkoyah5fKDYGhfp0suv9UU/9T9nJZxLb1lZGDqU9QU+E8omkNtgrIPYBt8hvWVdQ/2KEUL8OIAfN67777S/fxTAjzru+7v7HGv0iDmZI+ajqE8knW38I2hui5wdJwcT+Drc9cenA7yCd5ZWwG6DtQK1CWlTCtIULXZAhtt3ZuXP3VDAGjWnSYEwIJjoiDirUuZ0MR5hLEyblW2MU2OaiJ4ip6r7lH2hL/jV0+Es1gVQh3KR1YFrALkCdQliK3wtVsaxIH0uGhXMRVEguZ3BrIuFw7wFeQ/Y1o7fZlkASByRs+1EYAK/BnUN5jrAFbyDiFfA7oK1DlolM4rW1QVnoFzYYiFYGTUDBFboUXNQLQJm+a6artHoCKq4ZNzKP5uPuozqLT4Bd7QMyGi5FcqWKFkkG38YewJ4yEVAIkKf6d1T0cjpcgL5bGXUdMjrwTwsic7jp03w+pws9BOBC+5JkjkBbkbiriPmSGr7D6BFw+V1Po1S2+AMHkkflYXSZxWypDsMCDkTVV5zWshFQJdU46ARbeWabHnUSpwFtRQ5PVpW/1e9LVqgXEmDsi+QTQjbADwnB0iNa2UIgbzFu5zlLxbxo5zk2CK2wtq5fch7R+tBxFvtFG5sq/bPFhGKMoquLSyW/wvAaW+oSNoJ54gjyFPkZQitvGagva2l6j/BJjKZR598bZM+WUTPxFCqMjAcmRK6fbEPlH1gvO+vP/sDbj9hTVUniJjnM+KhYovwKCe4vrDvgrgN2mwRNRYWdVDzRVQtEPNFbF+EXKCCM8WLnX2RJc7ouStnnIoMoszQYIWo/GG1CAhIqG0hS7RV/4nrE7f8dEn1yLBNrtYLTUwbA7lWvWezMCxFISLZ2D1kB5RtUbH5OWlbfH4eNHrEnG6e7xf8UIULfpSTW1/YHytidz0CBekqgi45GwANOKvFQZucUTN2dgaAKnWuasxfZmeco8ycZaA+ZaT2K0BLjXOVSuvRshXKHkC2RcXPO4x1jZwuJ1C0eHSz2hVE7CgntmPA3gZuW4StR9V6NO2Momv7K60N7Todzr2UJUDph/OAkGsjVFT/DEBC7vaMP8P6fD4dyLWG9bqNYcnA2BfKPlHx0Om0RLsy9XNSJ5iJ6NMBfD+AN0AGGe8WQnwnEb0GwA8DeDOADwP4KiHEq237EgJzxLynwgU/ykltH9jvA3JfUNtkbqFbHG2+s9PWsETNIuCgImv4zKEGaZU21zXxeerSPXM9dzkoF/3Mqr4uiWRTg7meqaGiZAVlE8Y2EPdJ57yv8omYMwDfIoT4eSK6BPBPiOgnAXw9gPcLId5FRO8E8E4Af7J1T0IgP+No475pH9j7gHwvcGuQ9omiAePDa/Od0Q7nqiQ7T0AslHYGYPWZzbFIepHJKpJ9mack1e5zGTEs2C5/WckcoKr8ZVNd0bIOZZd1YULZhLENxEPZGrIke1rvjY86wSyEeBHAi+Xft0T0K5At8L4csgQRAL4PwE+jA8yiEMjWc8TcV3zJBz+hsT1tka6uAzZw20Dd29PWAJ1hZ29woN13brE0dv2cZR9okSWyZNvhM8vrArgahql5e6cSD2VGRtwCInPhr+EvZ4l1wW8fKLcB2YTx7C/X1ctjJqI3A/h8AD8L4A0ltAHg45BWR6tEIZDNVoa3+EK+PVM5mXXB3BWB94mddcvD6kmXgDbhXLu99J0p7sjU0C0NbUpKkKfgAW/4zLHwWwDkUTjqnLmAR73KjlVvjOqy3qhoD/lYFwrKOpBNGA+aJleKaBqNpfrKG8xlG7u/C+CPCiGekPZTSAghysYdtvu9A8A7AOD1YYQ8Oc+V7aHFou4Py5AnMQX5at89YM+X8r6uqJ2VEZoN2iasA8u2KqLWo+g2QFvhbPOdy+2rVvhdTZCKTEaHxmzE0FgMDAOqOrWdWp69hmuRcnVf4yrlLwP+FoYvlDOHx6xvX13ukUd/X+UFZiIKIaH8t4UQf6+8+hNE9CYhxItE9CYAL9nuW04BeDcAfNbygU+R1nOhoU9QXaD3gbwJ7+q+FogrWANNYDPtp7QCcFju2wVp3e6wAVqvcsw3iRPO+u2mzMY5tdLtPKm3AYXK7d0VmphadniXp55eoqSaF9kWLU3vHID3op9NXX6ybdvq8jGAfF9LskmGxn8TwK8IIf6ydtN7AXwdgHeV//+DzqPNVkYvuUBpky/o2wDe9t50RdwuUJvRdKjtR0Fa+dLqNhU9y31ljYwOtTio4KuXeOu5zsFFe4SsVwOak75VK9AurU64sMQ9ouXICIvNRT+gXPhL9rMybDnKLvtCXd8F5Km2bfCYkv0bIdfbHpXbvFMI8eNE9FrIrnO/HcB7hBDf1HUsn2/+74Sc9PqLRPQL5XV/ChLIP0JEbwfwEQBf5bGvWT2070msDehdAHeB23wsvqBWkLbZHXoU7QPn6jmkWdXPQ4FYPsZtrRDFtDPgM8TWWADUxUh2mntqBJQRn2ZE5orobXAGUJ/d52ljAE0Lo7bLE0OZCIOUy3tOyf7TAH5ECPHXiOhzIFuEvhnABsCfAfC55b9O+WRlfBCWCT6lvtjnILt9uX3KWX5iHhGaL9BtAG8Dtw5t2zH0/SlQuwAN1KNoHc7qOtPaMG0NW9SsWxqmaqOuDJuB8gzIUznhxPbctdJsm+KINWb/AX5R7THUZbM0MjJKUZ7uNa26zcKwQbkLyBPsqeMzJVsAeFj+fQXgXwGAEOIZgA8S0W/1PdjoJdlJ+nyAOTqSr9X3xNYGchfAXRG3CW0zutb3Z2aU2BYQmeExKzjr1wGoLQzWFgW1fGeV46xbGgCABcAsfTJqE7wXF9bnC9hT5mwLaVOSrT+GS9wCZx+pSNrHwgB2UJ4wkIeYkv1tAP4hEf1hAA8A/P59H8y4TYyeI41xAvKBfxfIbeD2BXYbqNU+XIDWHxvTbIwu31m3NbosDaWqlzNgtzOKrGFd2FLmaq+FJStjCotMrp/tYRA4Tyiq4s+mttxlJT0SdvnKQB3KXUAeqkVAj37MQ0zJ/mpID/k7iOjfBfC3iOhzyxmAvTRuo3wAa8cHfRawtC6Ru9UH/i6It4HbhHaXz6yDWkHaBWigHkUzA8Qua6PynTssDZfMWYLGEwCx0Joyd85aGM2LbBYGUKYLqowMYzJJl2xpcE5fuQXKE+4+2TklG8DbAbwVAIQQ/5iIFgAew5Gx1qY5Yp6QDjlpdUG9C+I2cNugrcO6zWdWkDYBrW+jR9E6nAE4rY3Kd+6wNADtw22xM2p+c7SQlX+s/eugikxuS86YGQ/AaRvm2EqPXVFyWxq2q6uckm5j5Jukl4WhQ/lYUbIuIrRWQvZQ55RsAL8Oue72HiL61yFrUV/e52Aje8xA4pGCNGunyNMD7IL6PuDugnWbDeICtNrGXCjU4Qx4+M4eloauys6w5BaLZNPqM5vNjHR1LbJNWXoP5ja12Rim2iwMBeUuIE+x0ZnnlOxvAfA3iOiPQS4Efr0QQgAAEX0YcmEwIqKvAPAlRkZHTXPEPHG1nch8oQ3Ywd0H1n0hbcI3T4pWD1rfp7kvHc5APZWut7LEL20OzWZGU5bNR/VeBHT1XdYmlHTJVkhiS58bG8pEzcG0+8pjSvYvQ6YX2+775j7HGtljFvfWY+7rDw8hF7T3jbLbnoOCdJdXbbM6fKJnFTXrsnnOjeO2eM0AENmi52TTXp7dksvso3PszVA1Lyq1z5Tq9rJrG7inHymfSnPEPJCOccLZF/Y2YPvAWn8OrmPvC+i26LnarsXSUOprZxRJ5izPbkzT7shldmmKdobN//aRbw6z7i+3Rcu1TIyWRT4TykP1Hmd02urMfXWGp/bnR+tctP7ro6QQtX99j93YX5q3LiiaC4fmQqGewWFbRLQtPOpf1j4LRa6uZbWo0JEuZpPe1/hcpE/G7lTLa6E3LbLe1SNaHgvK56x58W8g9fF7h5ILzj6Rtvk+dD1+dSxz320+tOkXt0XOvpaGTS47Q1fVCtSIkkWWdA5qnbp8O8wBsoJxn6KSroU/W7N7W1OisaEsPebzi5hnK2MgDX3COQT0fbxjJf3xtx3bBWjAbnP0gXO1jcXS0OVjZ7hka54vtht7XnOLzE5tQy0wDSGfn+6uXGZT+lw/X/ks+gFzpNymExSYHL8f8/IcF18M+YD+GIt8tmPbjtMF6H3gbF6v39eWPteWnbFrCWrpm9EjM8OUrx0wlZafgBvCbQ3yfTMybD0xdNXylrVouQvKz/tC4L2MmMeAv6lTnAz2zco4BNTmvtssjj5wNq/va2m4szO2+2VmlOIBIRRAHgCsqDcymnrPDF/pDfJ9VS8sabcxzGh5TCgHRJNcnO3SvQTzKTTkyeBQyPvaEko+2Rj6vl0R9CFwdmVq2O4HuO0Mm/pkZuhl2frE7HORmc/ca9JKnnRX/RmNixq7qFX9dbfwnCNluya/+HeKRbVTy4T8IaBWr3cf2+NUcDZli5q75PKZuxrni2QDCnhnWXabhuj72/+Yw1smrhzmttzmrmGqysZoA+8xoEy0f+rgKTX5cGCIRbVzh7sO6n0h3QfQbf6xvj9fOPdVG6wBd7HJrCPKswIQsGdj2NS22Pe8922fPJiH0KFwnxLYD42m+wJ6CDibUfM+cmVoHFSeDXuWxlBi8RLp3ZOj7HtM7VMFqOTbX/lYFkZANBeY3FeZxRm2f6fSOi+qf33k+5iPUdHoioYOHVDb5Wm2eaP7akppcqaGWPTqSpWzdZJzSYfvHC2367mImMfQFLxzBWffKNo3em5NjRvA0ujjM3cVm+yj+1BkAnT36OhbZ9EVKbdPwPaf3XfMBb+Aplky36VRT/cFBDbFfv/um44ZdfeNoA89ts/9zfLtrqjIZ25h2xfaWYbdUk58bmJ75GKHAbX2YvaVvtjnu/C32/48o2UieisR/TMi+jUieqfl9r9CRL9Q/vtVIrrWbnsfEV0T0f/qc6yziZj7wnkxIV/YV4d2izPVJ4J2Rb71/bmjYNv9h1gI1OXymV0qkgxomWayr8yqP122ZvVTkJlz3dWLua24pM2y8F34Uzp2etxQbT99pmQLIf6Ytv0fBvD52i6+HcAKwDf4HO9swNxXfUA+dYj3TXkz5Qton+P0hXPtdo9FwLZ85vb7tecyn0r7RLVDyHvBK097ZVy4fHrfMuxzjZbhNyVb11cD+LPqghDi/UT0Ft+DTXflYkSdi4VyqO3ha2+MtZjp+0XU5wQqHdJX4ZAsA5vOMU/WFOWpd8vPfWSLjNuiZdt7fmQ9JqIPaf/eYdxum5L9abYdEdFnAPhNAP7Rvg9meiHGxGSD89Qj7GNraIti1uEKhsoOaWv56enP91n4O7Z6LP4NMSVb6W0AflQIsXf0MG4TIzFMscSpZcL6eQf11OTTZe55Ut+eHkMukPr2zZ64jQH4TclWehuAbzzkYCf99Lb9tD4naCtQjwlon8W6WTLP1tphblYvDWH/6PbTWDYGEQ1lNflMyQYRfTaAFwD840MONln66YUTp+gWt4+m6Eubmupr6ZMedy6yDUZ9HtQ3I+OcJITIAKgp2b8C4EfUlGwi+jJt07cB+CE1HVuJiH4GwN8B8MVE9FEi+vfbjnc2v/eGbOxzbG0KMdsbpe6rH+3baP4UGnxiR0vWhiuH2bcUW257PBuDaLj2rF1TssvL3+a47+/uc6yzAbOpqYN6DHvjmHbGbJXMGkqmbTG39uzW2YLZlO0n+hRgfQr/edasodTmLas+GV09Mvpo6DS5AD17Uk9E5/eIe2hKPvWxvOf7Otz23HTKDmY8cnfX4yNDqW+q3BlkY5xE9yZi9tF9SNXTtY/V4Pu8h7Ix7qO//LyorbNcWwMjJVuq3Ng2BhGNfnIaQuf3iM9UQ1sZp4TyDNtZx9AJqv0mq+cqYj6VhoTyMYHss/82KB8SZbdNLJnlr3ggS+WQMVL2+zQti9nGcGv+NhxZ9wnKs/zF4uWpH8KoGjqHeai8dqL2boBT1fk94oE0xmLgUFCOApoElI8VLXep70DWWXYxOvw98snA6JPDPMuu+RN/JA0J5X00hUjZBLnZ8rNPb+VZdrHIHZnbSpH5RH8VHctfJky7GMilzm8vEX0vEb1ERL+kXfdtRPQxrVv/H/A5mABOPiNvDA0B5UOi5GNA+VTR8qzhFQY0GqBdWRizv9wun4j5PQC+C8D3G9f/FSHEX9r3wCacT/HlXufF4GlzQ0F5H/V9LkNAeWj5NskP5mj7YAV5Cmpp82nq0GG2vqlyQ/ZNCYgGK8keU51gFkJ8gIjefOwHMgVQH6JzAnKfY3VB+dzep/ustuZJbf4yFRmQH169N6U+zOeuQzzmbyKi/wzAhwB8ixDiVdtG5SSAdwDABaYV5QwRLR8C5EOgdqzoWO7bb9u2fR7qL9vS53w96an0YmY8wmEx5riiPB18uouPjpm/LD3m84uY933Efw3AbwHweQBeBPAdrg2FEO8WQnyBEOILlh5g3tdb7aO+PqxNi4D2grJ6fn2fo3rMvo9dP45vxoX657vvtn3Vtu+A8hA5zK55f/wIw1jvu2yDWPs2z/dtkH9O6pqSXW7zVUT0y0T0T4noB7Trjz8lWwjxCe2AfwOA18FcGvPn8BBA7qupeca7/ffbfp/ik67hq7ps/nJbqly4J9DpRANS76P2aWA05sIfEQ2Sx+wzJZuIPhPAtwL4nUKIV4no9doujj8lm4jeJIR4sbz4lQB+qW17m07hTR4C5bGAfOw0t30W8oYs0faxI9psjD4wDkaemj2lBvmec+5GUZ/BuRMemOAzJfu/BPDdytYVQrykbug7Jbvzk0tEPwjgLZBTZD8KOZL7LUT0eZAZcB+G51mAcLrFon2h3BfIU4PxMUDsu28fX3nIUmymjZBiz4GFEfD7/xxH1GMi+pB2+d1CiHdrl21Tsn+HsY/PAgAi+j8AMADfJoR43z4Pxicr46stV//NfQ52Ko0B5X6La+cJ4j7H8bEwdCj3sTH0VDm2cLe8tInicW0MHZ5FyySQffY3lroWBKc8Uirwn2AyxJRsDuAzIQPZ3wDgA0T0bwohrvfZ0b3WPlA+NyCPBWPfY9mg7JtRcZ+bGd23CHefZkamzqijnM+U7I8C+FkhRArg/yOiX4UE9c/1Pdj55ZH00FSgvE8mRfc+/bMozH3vGyEPCeU+AB6qdDvg/aLrcxIP3Z+vc0wXG1KMqPOfh6op2UQUQQ5dfa+xzd+HjJZBRI8hrY1/sc9jvrfhyTGh3AfIQ+1v6AyKIY8FuK0LHyj72hj6wl9Ys0G0v/fIYaZ7FsmeUoc0MJrwwh+EEBkRqSnZDMD3qinZAD4khHhveduXENEvA8gB/AkhxCeBakr2ZwO4KNfq3i6E+AnX8e4dmPsCecgIeWwQj+E/W4/rmX3gk6+sQ/mQopLOx+JYDJxT5zo0gC+ua+weGUTAUEPDu6ZkCyEEgG8u/5n3fT6mZJs6FpD9INp+7EPTzcbsadEn79gmF0j7QFlFy/q+VITsWvhzZWTwRexMm6Pw/lobs85bZw/mqQK5T2XcfsfuEekfIb/2kMU807rwhbLtssvGCCLeWvVnRsr3KXKeUg7zqUXw9pAnpbMF86mAvC+M5X37t87cd8FtHw3ZH9kHyOZ2Xb7yIWly9YPagS1YCLDZbx5KhwxezZPTTrU/tc4OzKda1Bs6Ot43ovaB8JgN6H2yK1ytPF1Q7vv4+xSW+ETGIji7r8Ush861Uf7ZfALPCchDwrgLxPtCeIx8YR8gA24o26LlfbMxAh72Ki7pgnN6z4c9zDqtJg/m+wzkvjDep1XmKeQL5Ob92qFcbddhY5iLfWOWZ7OBBy9M9ZhDaIziEqLpjtNq0zS+yRbdVyD3gXEbiPtC2HcyyDHkeqx9ImXz+up+zmyMqDUjQ4l45IykCxYCc2RsVdazq9whfvPzqMmB+dh9LfaBch8g99q2B4zbQHxK6LbJB8j76tCiEsDPb87OHMxDtLycNb5ODuax+iMPBeShYexbrtwG36lYGC61gbhvpNyVu9yVJgcegaJFM4e5xVM2/eRN9nxnDJybztHpOck3esyRTm5o9rMsfIDsa1P0rYhzbQMME32OpTZrpg+UWcQrKJu5y41jLqJq4a8rQhaMy5Q5i849cp51Xhr1Wx3Q6SPksYDcBuN9QOwC8LFT4w4poe16bKZn7BUlWywM01uW/3f7y0458pxz0Q3nPJ+j6SmJaE6XO6qmaFkcMtuub7GFDXK2xbAgYr0mRrikFmuGAn/b5JG2BT4blF0WhhLXbreJwlDaGeXCnzWSdkTOPnA+paLZU74XmjyYTw1kr200IHfZFG1Ne9qKLFwQtm6jbbvPaniR5HvP0/OV+dgBd5QMNKFsszBs3nLNxij9ZZtsFkY+2xdO8UWEZIB+zMcWARiod9eomiyY7yuQ9ymuAFogrB/Dkt+rrvOdWpxuMis0TfWJyrv25wPk2nUdFoY8Ju+fv2wpx857sDlLx+2cBty/5vtTFhG9FcB3Qrb9/B4hxLuM278ecuiqaqD/XUKI7ylvex+ALwTwQSHEl3Yda3JgPmZPi2NYFr52ha9NYeuipl9f3ccDYObth/TKBerRtw+8XXJF4y4vWd4WG5ebFsbuse3/sbZV/M228fmKMEyBic+U7FI/LIT4Jssujj8le0gNPX3aF8hy2/Yo2RfIvnbF3qXHtkhYXwTr8FT17fLN1nl7nmTWY6lo29feSDdZLyuk6yRT85RbLAzuKDbRbQyrv2zAeJ9eGXcj9xk+N4ULfu5FJj5Tsp0afEr2MbQPjIHxbItjAblPzm6v6LFHgQUL+eDDM02bpA3KbeXUvs+zy8JQ6tsfQ5dZ9WfLZd5mBZKsQDKH1NMVEZgfb4aYkg0Af5CIfg+AXwXwx4QQ/9KyTafGTZcDDR4hA/vbFkMDuU903BUZWzMQQn3bHZx8f7qr4Zmm95qX5bVq/ya4uyLtfeSyXrpOOmwROSPlIGqC21e2HGYzdzkrg+K0mEF8DzXElOz/BcAPCiG2RPQNAL4PwBfts6OTWxltGgrIcltq3aZ2uweQbdHxITC2WRMs5E4Ac2NKh3m7OcE422wBC7CyTVLdzwR3rvVDaIu0DwW36+SjPxYlG5RNIKuhq2Y2hsvGqAGZR7VUOTNS3j5vVX88ApLNcXa95PdqSraa71fqewD8xX0PNlkwnyJKHhLIbb5xF4zl5WZkKP9uQtgEEgAUWd1esEXVRZJV+9PBrRrUBBGvAd4G7Oq2AywSXxgrqQZF+m17Qbl20KjmLeupcnPV3346xFceqv8LCYEg98tI6lA1JRsSyG8D8DW1YxG9SQjxYnnxywD8yr4HmxSY9x3ndCzbwhfIXVkVOpDbLApbv4cuAAGwgiYAILRIJ+D1qKfI0hpoIw3CfBFLUAPAImp0EjOBPYS6YCwfl99r4u0rl9GyYLtj1eCs8XiKhSUsXp76ITw38pyS/d8Q0ZcByAB8CsDXq/uf5ZTsQ+br9YXykEDW7+OyK8zo2BYZy/vtomNbLq4NOioirP6GrGoTaRkhaDmuOrhFsgEr9yO2GwQXoT+oSw39A7QNxPXr2q0LQHuufTIxNPtCX/jT1/UUnJ87O8OhIOKNX09DpGUOKlEAw0TMPlOyvxXAtzruex5Tsn0nPwOnsS18Myz2AbINxvL/OpDbgKMuqy5pCjwAINTI+QeXVdRcwVq7v7qfArXYym11UKsvXmREyTZY26LrPnKBWFcfKAPtk7CraFkVlmivS+bIyFCd5bLcLxvDN6rNt+u97jcFHSPT53nX6GA+FMiufRwjSh4TyDpw9DQvV1SsLuuN3s2oGACEAWuRbKr7izQFLPvXQa0grR6bHiGZsB5Ctj4XtokkppWjP/7G69W14AfNwnAs/GWONOX1QPnLUwYxRbuT9jmKivM7aYwKZt8p4sfKSfaNkscAssuuqPnFWm8H9XMcQBPGyiuFTPuiPAOVoNFhC9RBraLlyv5Ql3kEaLfbommXhvhAudL/OqNkoPFrQv8lYUpFywrSCs59F/5ccGbREnm2/y+IvmJ8+k0hWMQO6lj4vGgSHrPSkN3fXEAGmlGyz8LeoUD2sSvM6LgPjHXAIE8hACCXUKA8A8IlKE9bQQ0AogPSAHqBel+5cpF97B2b2qJlXcpftvXImL3lpsxfUZOTKIART45DaRJgPrRHct8ouY9t0QfIXdkVXXaFGR3bFqsEC1FovqhgIUTAIaLV7md4nsqfb1kCKjIIAKTBugbqxQVQZBDJBmIrQaxDGpCWRwVpwApqYLeQCDTT9fpItyl0NRY+gVabB4DVwqiyMMqTmQh4LX850xb+0kIgF6Ja+EuLAmkhsDH85WSG9sHiC47svMu2B9NJwdzVNP+YXrJvlNwXyL7+sStzANBgsrhwghi8zLtlIVLiyAqBTSaQF8CCL8A4EC8CmcOpQA1UsAYkrBWoKeBOSFO0qEG6Fk2X+wRghbWpNq/SlebWiIIdMK5dp7axQdnxWhYsRF5Gy2khKkArf9kcKWVaGHk2vZS6vqJoAdpuaqmWQPneHOGX0RiaPWZP+UwxOQTKvtaFK/1Nj5J9LYte/rFHdKyALKIHu4UpC4zzQgJjnRXYZjKyizlhwQLwVGDBGVjAwLnsGRDkKUSZPqRH1Q1Ie1gegLaAWG5rwtqUzwDUmiz+cFt0XG1js300y8f2mgL1aBlopshts6IG6Kk3L+ozn1Cw8Cwhdh81KpgDDBMlm9v5Whf7RMmHALmtCg1wZwsIDcjKolDRnIJxWkgQp4XANhP41DrF0yRDWghcRAyXEccqZIg5IQwIPCAsOIERA+e8auwS5CmQrmVkzELpT2veNAUcKLLdQmHpL+vRNID6IiJQwVrJjMC65PSKDRgD9ei4cX8fKAPWaDktBLIcNRtDSfebEy1lI5s4qG0SAQexCMjboRzwEDncfq1ems8WYdXcaqipOs+TJuExA/u15tzHuugbJfss6tnsCmA/IINFKMKlhEa4rICxTaW3mRcyqtvkEsw3mwxPkwyvrlPcbDMkeYHLmOPxKqoAHfMAMSesMwlpBWtGAA842OJhFUnrUbSCNJVfWGemhwPUusx84lpetWObxu2+MAZqi3wNKKvoX4uUAVQwtkXLKvKUsJZ/677y9kzBIwIOaoHtsXX0fhlCyF+DZ6aTg7m9ledxrQufKNnVw8I3QgaaqVsuIAsWQkSrCsjbrEBeAllFx7kQNSDfJjk+eZfg5dstPvk0QZIXeLQMcftogcuY4yLieLwKEQYBrhYcjAhpsYuiWSAkrBkHi0IZQZdRsh5FA9hBmoW1hUM9mgZ2oFYSFlujj6Vhpru1wRhAHcjyjWyFsh4tAztAA/VouRYlKzifQctPVze8goXOPhIULawnT7aIBs9dn9VUJ5iJ6HsBfCmAl4QQn1te9xoAPwzgzQA+DOCrhBCv9jlwd5Oi/lA+RpTsWthTUfKgQA44imhVi5B1uyIXbiC/fLvB9V2KbZLjchXixZsN3nS1wNUqxNMkxkXEkRYFwiDAggdYhQycAYwkpNMqimaIbYAuJJBbIQ3UQK2kg7RPoULnYqBWVq2nwJlABmCFclHelmvWhR4t2xb9NllRZWQMVVwyttJCgBF8+xSft0RRpY2ek3wi5vcA+C4A369d904A7xdCvIuI3lle/pO+B+0TJZvbHwrlvlGyy7ZwLeoBPYFc+sh9gXyzTvHi9aYC8pObLbabFFmS49kyxKtLjuu7BI9WEW7u0hqgLyOGi4hjwYPK5lBRdMwJuSisgAbghDQAO6iB6r7qtVGy+c6dkXQXjOWbWN1u85NtUHZFy3qUbLYAVVILgGrm3ylm/3VJRv6ErBDeQKYwtL5HQcSBgftzz6qrE8xCiA8Q0ZuNq78cwFvKv78PwE/DA8xE/l4yMLyfbELZN0p22RZtaW++QK4yLLICm1xGbHqGhS+Q7262ePbkDgAQL2NEyxDbdWYF9OsvY1xEeX9A5ykQ1SENAFTCWLAIyJOq+nD3BpW/KIyfzTV4e6oLxvo2faCsR8tAvQTbtDGAXbR8TlFzLgRCnD5KHrP6j4D6Z/FMtK/H/Aat7+jHAbzBtSERvQPAOwDgNWQ/3FhQbrMubFFy9HBV7ituABlAY2HPF8j6wt42K5CXOchqUS/Lgbs0x22S4WmS4+k2w8t3CW7uUrx4s8GL12vc3qV49mSL7TrF3ZMt7q6vUZSgTJ8Byxceo8gK5Fcx8kzIEUhZjtclCyRZgatViGwVVVkcm2xnceRMIC0ISx6ABUAuCsSMA2U2R+VLKtiVdgcgIQ3A2tFLDPGT0gJgwJjTp/vbFi8ZRpSsL6rqv1K2WYHbJMM2K4tKsgJPy8vALlJOsmISUfIx8qgpWljXCGQTK/sghcl1mBtIXVOyte3+IIAfBfDbhRAfIqLXqssA3uMY1lrTwYt/QghBRM5PRDk3690A8Bl8UdvOBmSg3eoYCspt1oXNtuhqwB48eNidomXkIfvYFk+TDLfbDB+/3uDFmw2u7xK8erPBdp3h2ZMt1k+32N4+qaCstH71FWQPrgDsUri2SY67JEeSF1Wkt8kLbDJpb6RFgE1WlIuEQC5yLFiAPJDwCgMCKwQAJhcOI/maBHkKhEsJYxVNywPX37xweXCebCuAdZkwBpBlRQ3GwC5fWT8pqvdARcppIfB0m1XecpLvZv3pqXJ5XiBLT7sYeHAFYsBlSqT+3h0wxeTkQ1gHysrwnZJNRJcA/giAn9Wu3gD4MwA+t/zXqX3B/AnVrZ+I3gTgpb478IXyEJ5yl59ssy6ihw9ai0MaEXJZpdcG43oucj1K3ma7CE1FyTfbrLIubtYpXnqywbNnCe6eJrgrLYz1q684X+P02Q2eAcjSGFla4MHDuIrsqp/iqxDbZYEs5+AsKAFdyDQ7ESDLiyq9Lg8AlYYeCgC5qFLu5OupgVq+cI3HJHBYJVYNwEbPi0K7rMMY8qFaYaz7yeqXyiYrKijfJjmyvCjfo92in/p3l+TYJrk1Ws2TdeO6MaQem7d4BFFkAONOiNk6zPFFhKRHZOwD6QmXZftOyf4fAPwFAH9CXSGEeAbgg0T0W30Pti+Y3wvg6wC8q/z/H/je0QVkYDwot/nJi0eXdh+5xbKQtoQHkMuIrS1KTguBV+4S3G4z3NyltYyLJzdbPHuyQbLO8OzJHdJnN52vd/rsBvk2Qp4/BCCjOmAXWd0leRX9XcYcWV7gIubYZkXlP+dC+s+skO+HgjRQgjrXo+kdqKEVspjaZ9xPYYBY7wIH7CBc3e4BYwBVlKzyldOiwNNEAlqHcqK9dl0Vf2Z/5VMoyeXj35YTvWMuvwd5AeSBfP0CFtYWZ5WIR95l2dNuZCSsz8+ig6dkE9FvA/DpQoj/jYj+BA6QT7rcD0Iu9D0uR6L8WUgg/wgRvR3ARwB8lc/BAsfCwz7DUQ+BsstP1q0L9uCyNdMiuHwEBBxFtOwFZLW4p/KRdR9TX+C7uUtxvU5xc5fgE9ebmp+8XW+9oKxUZEkZWUvfGdj5kUm2szbWqxBXyxCbXEIZQGlvBJW9AQA5E0C+S7UDUAN1qPOyjKqbknaIj6rWmxbw6jKzJrpgrF9WUFYnRxeUVTSqbAzlL2dpjizJpa8/0dzmLAdSEt6vuyuXWVdzLmT/wbwTGcp60JRsIgoA/GVo46QOkU9Wxlc7bvriIR7AsaHctchn+snhxYNetkXVy6IFyMqyUAUiuo+pQKAv8H3yqYSz6Scn67S2yNdXbb6z+lmuFgYBVNFzGBS1HOhYyNedEbCFkPnQWjS9RfPLb63ELyNtl1zpadXdDf6ZvZN9YAygZl24oLzWFvruDBvjeVJXWbYuvSy7cdv59WXumpJ9Cekf/zTJxvNvBPBeIvoyIYQeiXvppJV/hwxI3RfKbX6ybl3Q6qEz00JFyVXptFYYkhWiqtbTV/p1IJtRsr7Ap6JkPRVu8yzF+um21U/2le47A0CWhsjSvMracEXPcvGvQFoEuE1QQRpACWoBRiSjaexArcsG4dwAdp+J1I0I2RiY2gbi3T52zYnMRT4blPVouTpuJiYbJfeVYGHNT3blMp+NRDHU42+dki2EuAHwWF0mop8G8Mf3gTJwIjB7dY47EpT1ghHTTw4uH3VHydHKmYes2xUuIOs/l20LfNd3SS0Vro+f7CvlOwOPkKXyp3eeCWf0vM0KXMVycfA2ybHgAcKgwNMEiLm0OgA0omlTKrqu6YCgyTbuyYSzCWMdxEpmlKxuV1BWfrx6XZTMNLlTZ2T0VVYIML4rInI1MjJT5lxl2W2z/869kZHnlGyniOjDAB4CiIjoKwB8iZnRoWt0MI8FZVvmhY+fLFPfLp2Le9YGQ7lwAtlc5dfzYdUC34s3mypKVlkXm2cpknXa20/2VZEluLu+Rp4/RJEVyJLcGT0rayMuI+SsDHM5C8qoNZdl3Vo0DaCKqHUpcA8h20QRs82lrSOca7iqnnnhgrK6Xgd0Hc7Tgs8m333mYh4gF+ozCrCWhfiGjJS5c6n+E4UYbF5h15Rs4/q3GJff3OdYo4LZNvPvWJGyvP5AKC8u6ot7ZT8LW7Xe0zS3ru67fEt9gU8VjGzXWc26sOUnDym1KJg9uKpS6tqi54gHWEYMtwCi0jRWsF6wAJzVgezyj2MLsPvKNebJtDd0UGea3aBPIPGFMSAXS9Xr8exZUtkYm2dptfB37PetS+oxrpMcl/F+X/GqIdWeNsB9LTIZSyf1mH2gbKqteKS6r8VTBvpBGQ9eQGGxLcxqPVU+/al12gpiALUveJt1sd2ko365ZUR+VV12Rc+PliFu7uRizrJ8f6ISstVlFjTAu2jpwc09hiZkHv6tOepJydYRDqiXUttArC4rL1mv8tsmMgtju84qKCfrtIJyejf8LxwfZWm5GFn+wknKNDk9SGDEZGZGQfWUuVou8+47o2dmmLnMevXfZFPmRGGtXJy6TgbmNijrsjW5V9LhbVoYte2qhT6jtNrMvCjT4ES4lI2FWvoibzNZGPJkI0unX7lLnelVNo9SLxjZrrNaKly+XY8ecen5zrHlNQR2MFtGDNfrtIqaAWBVvhcmsE0tHSfcfdRVRKFXwZnb1rxio1ucijj1fajsC2VVqPcsS4vKcsq36xNCuUC8lH/rJxc9lzkMCqwc37M26QuA+4yYOnn13xnqJGBuKzIB/C0MoN4lbnf/uoXhs9AXrB42oKx3fbM1GfrUOsWrm7RKdXNB2PbFd/nJp4CyUpEl2N4+gVyjkNKtjcsyEruWvZIqGEec4WZtRNIekbC+D5v2Gdtk649sA3iS2UGtImKg7hfrlX0yWpa/buTfch3gVJV+uuRjlu+TWh9QPjOAcrCs5jMT6guA5X6qgQf6PMfybz1lji8iZMDBucxHkxBnmVUyOpitDYs8LAwll4VhFpCYecqNJkRtUF5eQYTLWraFsi1UYcgrdwleuUtrHd/aIi95eRd9je0n+8r0naOlNuGjBBUv36/b0taItffMFSm3AfgQdcHb1jvClnusnpsJYACNVLgsySvLKUvSyUBZ1zrJ8WgZ1nxmm50B821hEQTLdgN7LRWAh2iOnv10Uo8ZcEPZFS2b2zUW/CxQ5ou4nqe8eugFZZVtoWyLLEc1W+/VdYqX75JacyHA/dMXqH/pVWn12H6yr0zfGQBYGQVvtSotHrLaZcbtv4ZcUxS45af1UJkNrm5rrv0rAJtz+8w0uCIrJgFlVlalqsdtK7dX6Y6brEAYUMPOyEXdZ0ZaPpfA4jNrmRn7pMw1th2jyESIzurFKWpUMJuxlMtXNqVbGLZG90C9pzJQb2wfPlx1QrlYXlVjnVLieJoWjd7Itij55dsNPnG9qeBUA7El0lJS+cmntC66pPvORVYgMKJhHgbYrpsfen6k6LhNfYaguvKNC0t0bYO4nnnRBWUFTwDIR3if9VJ7IKz6oGS5LA4CmnZGrP2KFSysmhnZGhfp1/mkzLVV/+maSFn2ZHSyiNk1pw+wL/iZvrL+t83C0MusaxV9nlBWUbI58FRFySrN7dWbTeUTK9m+4ED9S35qP9lXuu/MDN/40EBRj5bHyv/1qdDLknaQ7LvIp0Ma6A9q8/4uqcwMPQ99kxe4QN3OUDaGXmhi/t5RLUB9FgAnm5lxhjpN5Z8HlPXLXc3ugbqFoafF6b0vVJm1gnKxuJS9LkoorwXDJqtDWUXJT5MML91uG9NDnj3ZVNkUbbJ1G5s6lJWU7xx4gmFqGvp1Hsq6aAO1L4SVzGBA2hjy73WSI2JBw85Ii13anJIoKwBtPrOraT7QbGYE7J/LPGjrz+FKskfVyT1m12KfmR5n+srV9bU2nruBqfpcPrNLnIqUwWSfCxUp55qfvM0EPvZkg1fXKW62GV6+3Tamh+iN6vvqXKCs65we89QW43zUF8YAqsidsUe1X21xxHBzV3+/rmKOtAiQFkXNzgBo5zPrsvTT3t0kMzPUyLVsjpQH1fgl2S2+si1adqlRVKIVkqgPC4DaGCiVqywnjPCqmq9goUyH03okv3KXtFoXqlH9PlCeNWtIpXc3uAOqtQAAeIJd50ClmzLDJgwIN5sMr1mGSElUU7NDQqNpvvKUbQuAx9KgjfKFaE7SOQOdNGLuSo0zZavwk//vQMzLKNksIgFKOJegVtEyysKRTb6r4nvlLsHHb7f49et11cvipSebxuDTKTRDnzULkHAusgR4QTY4U9WbSuskxzJiiLlsRCX7ZogyK0N2+St4CJbuPtOChaAia46amnV0ndzKUHJFx/qiHwBrMcnuNl773xYtU7QoeynvouVtqkY7yaKRV+5kpGxmXSg/+e76eqinPWvWYMqTdS0HXUmV1i8jhogHWDwK8DTJEQYyas6YzM7IC4Eg4PVOc3raXLkAaMvWMNW3yORYGRniTD3m4Vp9eYhsXYwsavOXgWbkDKDyk5WNoYanNqJlZWOU0fK2tDA2eYG7NMerG5kO9y9eelZB+dmTLW4+eTdDedbklSdrbF79OLbrLe7KdZC7pwmePUvw4vVa9mjZZlX/jFzIz77qjKjPURRMg7LF/1bfuedFRPRWIvpnRPRrRPROy+3/FRH9IhH9AhF9kIg+p7z+tUT0U0T0lIi+y+dYJ4uYh7AxqkW/0l/WbQwAtfQ4PVoGiyCiFVLi2GRFzcL42JMNfv2Td3j5doOPvfysSoXbd5Fv1qxTaPPqx5Fvr6pZj4BMT7xZpXj5douYB2Vf7V3UnAuSdkbpM1OulWOrxvktmRmTlBim7afnlOwfEEL8z+X2XwY5auqtGHFK9qCqV/U1K/2UTBsD2PnLVhvDES0X4VJGy7m0L+7SAh97ssGLT7dV9oWC8jH85HPKbph1vtrlWstFQcYCvBSxnaXBAoQB4WohJ9Q0RnmZaXN6p7k9mhmZOrPRUp1TsoUQeuT2AHIo/KhTskeR6S8Ddhuj2l6zMXyj5adJUWVgvFRC+V++IqH85JW7qhBk1vnoHFPljiW1KJg9uELAA/CQ4UUeIGKytzZnAW42GRiFWHLDZ1aTzANeXwAcITNjMAmBwu8EcvCUbAAgom8E8M0AIgBf1P8BS50EzK6Ckq7WntV1Rvm1qvRTf1dNitR4KCNaLqIVnm5zPE3z2mLfRz55h4+88kz6cjfH8ZPnaHnW2FInqnUUYvEgxO0dx81KDmq4jDmeJkyOBeOEBSeEjf7MO7D5zADs0y9jQjpoSraSEOK7AXw3EX0NgD8N4Ov22c+oi3/7yhUl62lywM7G0KWiZV25GgOVyxLVLC9wc5diXU49znPZpGbWrPuiPFkjS2Q3w+06w3XZplYNdvCRbQHwOVLXlGxTPwTgK/Y92FmA2dUm0EzHMUtCRZpCZEntDE9FhlBkWHBCzAmXEcdFzHFVToW+XIWIF/IfU53HB9S5ljXPOm+xaIl4GWPxIES85Hi0irCMGK5ijjAgxFz6zYwA5CmQJbVIGZC9mX06teVp5kyV62r5OWhxCQBRFMg3Sec/D1VTsokogpySXRvASkSfqV38DwH8830f96Q85jwprHaGfdussjPyTYKsnFACoKpUQrSASDYQqvdyngF5CkrXiKNLLHmAfMGwyUJsLhfaaPrd9ONnT+x9LmbNOheFqyvElw+xehhjdRHhDY8WeNPVAq+7jHERczxeRYjLQIUHBMq0Bb88A4oMYrvZBThZArHddAItTzJnZzl94e8cusp5Tsn+JiL6/QBSyE63lY0x+SnZprJN1lp6nSd5w2fON6l1hFS22cpuchelD1b6zCpqpoBD5AmQJQjDDAvOkBWBLE0tCmT5EklW1CyNgAdYPw3nVLkzEouW8wJgqcULb0S8lAMPHjxc4IWrBV53ucAbHy3w2lWEFxYhViHDggVYMEIoNEjmMmoWyaZa+BPJpvYLNNtskW0SFEnmBHW6yVB4ZGDo0XKedHcB9JJo/pLee1cdU7KFEH+k5b5v7nOsk4DZBlubsnXWyMxIN5nVcy6SDCgXAIssBYsX8sye1uv9KZfRgMhTxJwj5YS0IDxeRdhmBX7DC9K+UKOHVKtLxh7NxSWzzkYsWiJ8cIUHD1eIlhzxMsTDqxhverTEmx4t8LpVhMerEFcLXouWke1sDD1aBlCzMVyZDj42xrlFy6fQySPmPiqSvJHLnG+2tQZGRZKBLaJd45VkA1GmzKmomfIUlNwhZCEWjCEv+wY8XkVlE6MC6+QBAOATkIn5z55sADwaJH0u4NGcnTHraGLREssXHiNehFhdxXLNZMnx+ofSwnj9ZYwXliEuIw5GVLYCJbCAZG+MIqtFywAaNgbQHonu0+5zd9+BomVIjzmbyvzBHjorMJtSPnOeShhnG9mGMN8klZ1BPKoWAasGRnkCYiFEnoJzjgUHsiJAFgIvLEJsyqkPd0mOiDO89ER+EHnEcHfDZt951mSl/OTlhVzoW11EePAgwqNVWPnKj1cRLiKOuEyRizkhZiQHshrRMgCrjaFsizYbo2tyiR4tD73od+6aHJjVAqDpPZsWRpvPHEW8Zmc4FwHLDI2MGHggP6CyCkqm0K0f5bUhos+0eXbbzew7z5qWwtUVVo8elX5yjHjJ8eBBhNc/XOBqGVa+8kW0y1vWo2UkaS1aBmC1MVyy5S6bWRhjV/sJIc6yV/TkwOwjm8+cb5Iqj9lmZwCwLgIi4FrULOGs/GYAeLkE8zKSFVOA9J2DJwGAhzOcZ51cyk+OlzFWD2PEJZgvVyEerSK86WqBq1WI160iXEYMYRBgFTIwkp93RpBjpcxMjHLRT7cxgJ2/bLMI8s22YWPYFv5c0fKQNsY5axJg3iczY3dbVhWa6AuANTsDaETNgMxphhY1x5wABMjyAo9Xu3zjiAVY3soP4Spi+MR1aW2EARgL9loUnH3mWUNI95OjJceDhwvES443PFrgahXhURkpX8YyXz/mAa4WHJwByzJ3ubno14yWq+DG8Jd9bYyu/OWjqRCDZWWMqZOBuR22u3xmMzNDXwBUdoZaBVY+M4DKzggAa9QcBBwF5IwzBBxxFAKQ7Q8loFmZ3xmAl5kZEQ/wYvn3dcTw5EYel4evrcbZez//7fqs4NxVGHOMYpxDFD64Oto6gM907LEU8Ej+guMB4mUIxgmXqxARZ3i0DHG1CiWUI46LiFULfowILAAYobHoB8C+6Gfxl5Vs2RguG8MnWn7ePedRwSyEu/SzK2oG6haGy84AgAzaeKkFQGXULACIMEQBWfKoSlnU5ThaaZcKAKysiApKT042fllFDBHfIOIBGCfcPU0Q8ABAGbkbgzFtE6C32MFZ3me6gA54hPjyYe06c2K2Kd4yQmw8rby26prQbU7WVifgqcBZl3rdl1H9/0X5OZaBRj1ati36ie2mqvRTi35iu0GRpSiSrLIxzGjZLCopkrwG6NnC8NNJrYyufGYd1mrbdJMhBGpRsy7ViznbbKsnF/Cylyx2ixj6QmCQrmtwzsUOzrkArsrHEAaEBdt15nrxRkL6EyFDvAirL7j+Rc6SHJEW8Wfp7rY82i0gThHQ6jHFlw/BWFB96QPehDIPLdf17Lmt1AX9PjKh2qbM8EL190pXkYXYlu/drrXmaaW//isNyhGT7T3Vgh8j+RmuRcubdSNFTv2yFMmm5i2b2RjALlrWveVDFv2GjJaFEL4l15PS6GBO0tw5kLUOYredAZRnYjQbHOlRMyCfoLI05BUlAO9KIF7Kq1WMHABYaZGznCJc4DXLsIqa7dZGiq36qaYAnQnEZeaIui5e7mAhI+v6AuIUAK0eA4uX4JHsGyJbRpa9ss3xXhpIzUiZ8fapNaeIrNsi5DwTzu3U+7YDuPwVcUo46xYSDxni8r2JWICo/LxexLyKllUhSRUtJ3f2aDnZ7IKYMloGUIuWbTo0Wn7eLQylky/+mVGzaWk4o2bN0nBKWwjEArtqQKBeql1ursM55vIDL4OmACkJtFkbVyvZnS7JdpOJk9LS2CY54iWvAZuxANu1+hA/RJakNU/0VIDWoRwvY/CQIVpy8IhVANZhqoNXXR9r72dkia4B1NIQ2xTxw8CtKjjbpE+STjQbaqtXqGmQzjMBHqXlL4fTw9k8uUVcfiaXEaua4evpcS5v2VZ+bYuWgd2i3z7R8phQFkKcYwvSw8BcNua4BZADyHz7mZpRs0+Jtitqtk01qe5TfpDaLA0FYhPOIQAWrbDNCoQBYZMJhIGcj6ai55q1cbvFuhwXn5SRlQI1VqG8PtNyop/tPuQBD5Csg8p31tW26DYktPXjKOsiWobgoVxU4iED41SDgA3A0n+vvydL4z2KHFaFL6wP0Z3jJ7X+ngGo3rfdfcLy+qIGbECW62/jJdJnNyfznXkk35+oDBaUjcGZDCBUelyvaFnZGUa07MoLzjdpBWUzWlby9ZXPbLrJ4BoiYv59QohXBthPJRUl27rN2aJmwF1l1GVpANJvBgAKOJDc1SPnaIW87FdrRs961kbMA2yzAjfrtGqE9GgZVqCOuPaFN8QjLUqDf1Vh3xaiNpCb+4gvH1bWxeJBCMYCxEte/UzWI2AFUgViBQP9NnW9LjOKNm835QK5j5IWj3ltfPnV+wbsAJ7kBa5W9e2TLMd1lNYKjqSuAJx+UVC3MdSiH2flGklZ5ReKrDtaBqoFv8YinxEtmxaGqa6eGEezMArRa1r3VHRyK0OpLWpWoO7jNTf3ITvPYYFdCl15mz5ckhYXDTgHLAQYl71qAfCCABTgbGdtvLoJsMkKXMUcm7zAtizrvrmTH9hdNF1/jjxk2GofWh6yo1UVtoHc9JMXD8qe1Jzw4EGEiAe1aHipeZkAqp/OCro6bHWwxgaUFxbo8gEX/3RlJqRL4G7K61VRUZIXGoR3kfTuRNv02HkoF0dPtSioFmf1hT99pp9eTKKq/GrRsiY9WlbSo2VXXrAtQq41LPK0MKYaLRPRWwF8J2Tbz+8RQrzLuP2bAfwXkPHgywD+cyHER8rb3gfgCwF8UAjxpV3HOhTMAsA/JCIB4K8bM7Ja1bYI2KV9oma+iHYfKEsKnRJFC2lraHAGjxCGSzBe5joHgG1hUI2Ef5rk2GSyrPsy5hWkpbWx+9JHnOH6bndSMH3nsaoKbX6yanwTRwyPyrxYMyI2Qaxui8tBn0o6aBcamMNgF3GawNYVBoeBOi3qQN5mzShaTfFQ7xtWqE6wwA7WV6sQSVaUUSnDS9Yjjus761kyyl9WNsZFmbdspsepKr9Kuo1hpMdZC0g6omXXoh8wroUhhDiooZKS55Ts/wvAFwgh7ojovwbwFwH8ofK2b4cMBb7B53iHgvl3CSE+RkSvB/CTRPT/CiE+oG9ARO8A8A4AeF1Q723R5jWbdoYZNevbtkXNtiwNwO43A/InnAlnUX6IgzxttTaUnREGAZ4mGdIiAM8KLFiBTS6/zOZP6yRjWmN+hjwvkKVyojGLl0dvlqQiZR4ymXlRLvIxTpV1oaD8aCnfPwVkPWrWYcxZUAHYBV8F24UFyC5IM2rP8LApN3Lnt1mBS+OHw6aEb1oUuIhYNW7pAhqoAWzi3S8hXdc8wG2YgoesWhQcw3cOV1e1qSRveLTriXEV81pbT33BT0XLQboGJXegdI3i9no3oUT7BZmXEXJX32UdxNb2ntV1Rk54LYqeZqRcymdK9k9p2/+fAL5Wu+39RPQW34MdBGYhxMfK/18ioh8rH/wHjG3eDeDdAPCbw2WjwmQfOOvqytDQW4Lqi4E1vxkAVjLKqRYDSziLPKkgjWglF0yiFappgxxlSA5ssx1U0iIAsgLgATYA9KmDEQ9qUXPEc2xDhjyrP34ehaN2savS4bT3Y6XBtwJxCWVbhMxZgMtyu7iCczNi1uFrAteViLEfmOuXY85g2vyrkFUAlyfWHajliYUhLUTjJKvsHZWZo3xn09pYv/rK4HBWDfAfPl5hdRHh0173AK+7XOA3v/4BXreK8Mayi9wqDHARySb4MQ8QJHeg5G4HZc1bLp7dQtw9qUXLQLMZvhkt6wt+1etuqfLrA+Wko+jHW4Xo7HJXapAp2ZreDuB/936chvYGMxE9ABAIIW7Lv78EwJ/rut86F1iy9i9YZ+GJETV3FZ0o6cNaVQpd62JgtECQrFFE2APO5ZUWOC8jGSXfJTnWsH8Aech6FUcMLR7WbYpVh22houTd/Lh6RGwDsQKwDbh6pF09Jst1PsrMYaMMjQGkCuCMWPVY2yD9dJtV6ZLq9Yg4s0bPwONBfefFC2/Eg4crrK7i/lA2F/w2T1E8eyKhbLEwzJ4YPhaGCWXTQ+7ylAeDcj8NMiUbAIjoawF8AYDfu+8+DomY3wDgx0h+qTiAHxBCvM/njiacfYpO9rU0zBVZ09KowblUcfekuu4QOG+yoLy+DuetFm3JGYM7O0NFW4nFBx1DysZQijirRcsKQgpeNihflr1+q306QKzgawOuuf5nA7W/qAHiGATzvJcVorSlCLkQYMSqaFpZIGodIQwIt0lepUterUJ8/HrjjJ4ZC7CNl9i8+vG9n4VqWKT3WnZBOeZ2X5mSO1DyDEGyrqCsV/iZUG5LjwPqY6NsvrJpYUwUyj7ympJdzvz7bwH8XiHE3ukge4O59Fr+7X3vb6pPbrMtS8NlaVQDW7UkcxecnZkae8L5asFxs8kacFaRlsrYOLVsJdBxxGo/03X7wuYnhwHhIuJV4Q0jqlkSLhizwA5d80fVvtFy9XwYWSNn3epIC5VxU0bZZWSdi50FsltHKBDzAE+THJzJNQU8ku01X7REz4CyiN64l++sN8B/8FD+e8OjhRPKFyGrp8Yp60KDsi1nGXD7yi4LA+jnKyuNAWUhxFCd7aop2ZBAfhuAr9E3IKLPB/DXAbxVCGFfF/bUydLlbJaGK3Juy2sG0IiabZaGag2626dRfKK1CJW5FkDw4LLaXvXVkPEUOuGcMwHksuJKwRpZIaNmFmBbRqFqSorymbcnmoGmFv5sJdL6z3XdugCAy6hZDSnTstwg1q+vUhAN8DLjcpAffhKTWTV15RqsmXQqkAu1sCtBrYCuoumYE+IsqDI2VGXdggW4YVl10lW9VK4j+dh5+X9f31k1wF89jPHg4QIPr2I8WoVOKC9Y0ApllYFR3D1pbVLUBmUlvZDE5ivrGsVTPpI8p2R/O4ALAH+ndBJ+XQjxZQBARD8D4LMBXBDRRwG8XQjxE67jnTSPuQvO1gnZDksDcHefs6XL6H4zUF8MtKXRqeuBZSec8wBYIMAGBVYoH38J57QQVdSs2xnXd3Iz5S0nJxxSqfxlZWMAaEDZ9JNVrixnqObI+cBYAbgBXqOFaiO9aw+xdC3bvGoKAIDJ91mBOy9EFWHL1EhphdSiaRSVH32zySp7Q0XPanFQRc/AbgJOH99Z95PjhRyoqmb3vbEcqmpCuTVfuchqGRg2C8MFZV3m5GuXr2yzMHygvDZXbfeUKITXhG6vfXVPyf79Lff93X2OdfICE9/I2ZaR0dV9Tp3J1QiqPn4zASie3Tb8Z184bzI7nMNAWhpZHlSLgNfrVAI6K6qI2dbBbSzZbAwXlJWfrKC8YEEJXLmvThhrAK7B16hS9AEzWaJqwZonVxPO8oFFFbgDC6jNaJoHDGuS3Qdfswxxl+aVvaFy2pVl9fFysMJ1+Z7WJq/Dnu9sDlRdXUR44Wohp1xrE0neeBmX78EOys4MDD0tTveVE/diny6XhdEF5fo+2qE8FJDPXSP3Y7Zf35ap0RY1K7kWAk1Lg5lZGdgTzuUX2wVnVggsONnhDI6nSQZeLhpFPKhW9IG0sxvbMdVY+GO7rAMdyhfleCLdT1YNchSUw4A6YUxFVgOwDt8GZHP3ApRZuVa7DYBgvHEdWD2ZWeWqQ0GbR1UUH7CwAek8AFgQYJvJBUPOmNPeAFBvE6tNwAEeNRYF9UU+3U++KsdEve4yxmtXER6v5KTrhwvmBeVaO0+jF4Zrsc/WpAho7xxnKrP4z8eMknUJccLpKQdo/LafhUDksZDTFTUfamno+c1KemVgBedyyrauqgAFOziLLAFxCR4ecKAQZdRIYAUBTCAWu0jqNsmrzIVVxHCzThHxAM86X5njSO/nq2yM6m+2S32TwzuDxiKfCeWYKRtDA3LeBDIVWR3CBoB16NoiYqeKrIKseT/BQsCEeQlvKoEttPub0XRIQBrIEn3V4CorBBiJ8iQlAX2bZJW9cRlzRDzAzVJWUV6vQrx6s0G8DPHsSYh4+Rm4u74Gi5ed1sVFzPHCYlc84gvlKgMjTRv5yl2+MrBrUmRaGLZ2nqaFcQoon7NOYmXY4OwbNftaGoB9DJX822FpGAuE8sakytRQswL16kAVjVGRQSAC8hQsCpEVAmFAyNX/5QdvwQOkSYEFD/DUEQQO2Si+r2zFJYDMvlD2hZLuKQNoRMpMTccAAL0M2ISyBmMz+q2g2mJl6D0dXFLvnTougB14y+MoYAvGQXlSg7QIOAgJwCOIgCNEipCFKHgIRgVysetAmBZ1QMc8w2XEcBFxPL3McLUK5eLgKsL1XYJXlxzbdYbVQ/n5Uwt8arr1mx4t8PrSR1ZAVr9SltxY6Ns8babEbeuRsg7l9Omz3lDWF/uOBeXEzKDZV0JMvaLQqpN5zD5w9l0IVLJFzXpus83SAMoGLeXfLksD2txAJVpc1DI1RJYAEa+i5jyXUXNWoJyzJu8niy/kh0Wt4C8jVi0ATk2NxkM8qF1XW+ijnXXhgvJuGnNaFjo4omINxuZrr1pR+kptT/HCejtFC/m4At4JaQRcFiQVGYI8xdIAdFrsAB3zHaAvogJPE9mV8JW7BG98tMDHrzcVoG/L9EmVBqcD+SKS9zNtI6+UOOUjP7ut7Iv82W3Nvkie3FX2ni+Ude0D5aMC+cx10sW/vnBWarM05HX2hvquLA01jkqXmrKtpIOBVJVgke0sjfKLS0UGwUKwgMAKgRQSVKrAIS4XhgC5UHbb/hKNIleKnP6/grFeXm2LluXf5GddlFD2gXE1sblHD2r1y6Z2nXocRqc9sd1U0PaBdM2TLv1oBWjVwzstBLaZtDhiTljlrMptv4gYniY5LmNeAfp6nSJiAV57ETV85FXIKiBXDe8Jfot8evaFAeXN9W1toa8PlLsyMKYAZVGIzpajU9TJszL62BpdlgbQvhBoZmlU+7UsBAbalG1gFzUDljah8sGBWFjZGSoFS9kZgARZnu28WqVlxHBddpXT24CObWkoQK8MKJtS3jJgj5Y7oVxaFxWUS8jZQAzUX+8u28JcD1CXyUh9rJ1otfeVeNSIrtXtlJeLviyredJ6FO0CdF4AGVNRdIhtJnAZFTVA325lmt1rVxEuywhZAXnJ5Zy+BaPaLxKXdaFylKvnmiUobq+r7IvkybNGU6L7BuVz1snB7JIO5765zbp0S0OfduJaCDQLT6qRVOiOmpGnTjtD+cxmX4hDmsCPJdXXF6h3g3NFy8jRaV3o3rHelF3JBmMTuubtbbKBuLpNg7fajqJFDdRmNG1Cug3QeSHK3GdCLoBNJrBgAmkoJ4tcRnkF6DCgBpAXXIuO8xTI0uqE5xsl63nKJpRVVaxZQDI0lGcg+2sSYPbN1DDlGzXbyrX1qFkv1zYLTwDNnwTsUXO0qCJkKmQSv2lnABJkGXaWhtkQfhWxymc8lfRhnvr/wK5LnJmJIa8zomUtSgYsUNaiZJtNYYNxA8AdtobNyjCPA6BqYKVvL9K0Dmr1fLRoWoe0YNluMZhFECyECDgYjxAEHGH5+Sh4iJhJUMucaIGLLMDDxa7r3UW0m88XszI6Tu5Am6w60anX0xYl60AGdlNI0id31kU+4PhQtskF5SEzNEQhznLA66hgLuB+wbssDVfU3NXkqHZ8R9Ssl2u7FgJtUTOg/dzNU4g8kYDOEhk56XZGIL+EnAGxCHCrsUFPSZuSVDc5/QSiFv3MaLnKVU52C31t1oUNyK0w7mNn6JG39rdr4Q9GlCyfdFSPnjVQV9G0xfJQkAbjVb60KnJRoGYAwvLzUYQh8lBgmwfVOkQ97a0JY7VYqneH64qSXZkXwDhQ1mHbFiXPaXNSo0fMbWlx+0bObTKjZpWlAdgrAm0LgUA9alZTtmvXl700kKcytapcsbfZGUpmdoMuHgYYc3Qcrw1W1Qauam07FxWoy/sYVX1VFkYLSHQo60D2hXFbNobqH+yU5fZA65+hWxY2WFftYA3fmiyWRxAtgKAeSeuFLQrWVMI6DDjAQ5nBkmXApvkamvaPK0o2J4/omRcAGmXWU4DysYAshLuJ0pR1EiujD5yHiJpdo6jkfjKv9Dk9QwOoR3W1SExfBCzFCNCRIHtJ7FLmTMkFwNNaGnoOs81XVp6yLVreF8omkG2LgS742qZq+CiHvF91Qi73r4BtwroCdRlR69E0YIc0RQtQijJveg3BwnZYd9g+QrcpekTJ6nWyQdk23frcoXzOmlR3OaW2yLlrIdBXbV6zLWpWGRpWz3JbFpzkaaP8lwX1dpO6z3xOCoPAamP4SIeyrtrPbyXLlGYlBeU2CLsGhfaW9jbrT7MCbk9IAx1ZHoC0P/qeyHoAGWjPvACa7TuHWuizQbkNyIMtCs4ec3/5TDPpsx3gLtV2VQRW99tsrV6zWQ2oWoPCXNlPNrvUuWqnu7Q5oJ7P7FIcna71p9mnw5UuB7TbGAAahSNKZsRXqcW2cAHZBeGs57h6vohbgZ4jqZ2sFah7QVqzRMjie1dRNVDZFADqvS1Q/1XRZlu4UuEAP+sCkFD27RI3FJSnnKXhMSX79wD4qwD+LQBvE0L8qHbb+zDilOyjqW/U7MrQMOWarG02OFJfxGyzBUczitYXhkyRljanpOczu6QaGU1Ztnl8ZoqcXjDiipaB+s9woN260MFjygbitqkbgJya3nb/tk9SDdRZioCHrZAGdr40UM+pNrM9ADitCsB+0mobmGou8Mm/h7MuADeUTxYla5Ie8+El2Z5Tsn8dwNcD+OOWXYw6JftgHSNq9pXVc04za4MjNSOQxc1IGdCzM7KqClCJG4t+plR7zZsT+8rALhNDaWHxK3R/2dQOzkZFH+rRsmlh+FgXCsr7gPjQ7bHZ1n49FUlWpVZWoLZAGnBnewDNhUTAD8YAOn1k+bc7SlZ/m1GyfH3Gg/KUo2RNPlOyP1ze1lhtHHVK9lByQXffqHkfO8OWOmdT5RfaSnq1fGalIE+RU/1l5mxX/TeVsuw27XoqN9+LavKIq0OckRrXkJFvK+/SDWQXWIfymBMNvC7ptypQ65AGUIFaqZGyp+ALyHxq3Uv2fD1cKXAAekfJcn/DL/KdqrhECOE7HWXoKdkHaRJgBvwi4qGiZpud4So4sfnM8oak4TPr0gtNdJkpc1OUzVtetCz8Nfxl2Ft0uqrSAH8om0C2gXjfDI0umbCuqkSVrVFG1eoxKVAr6cBWChwnLNM3lsdrnphcOclK+0TJwHCLfGcUJQ82JXsITQbMgGOaiWfUbMonagZskN5a5gP29JlVoYkmOepHdpo7B7Ut/Cnpb5XuL1eLfkZWgaswxAfKWYvHbAOxfnIdUvr6g5IO7BqsS5CqE7vtsdui8raTUVGDrh3I+ky+Q6NkfXvgcCj7AnltjjA/vbymZA+lSUww0dUVFXc1OPJdBATsdoaZ01w7RovPTGo1PuCdKXPnIlc1oj44VS38AfUJJC658m6B7ijZhJIuG4jNvttDybYOoR6PgnaiRc19FiKB7uerP1cbkHUYK+0TJcvruqE8pHUxNJALx2PZQ51TsofUJCeY9LEs2qJmU7YybSWXneHqnWFrJ2kt+TVS5s5Nejm2npFRW/iz+cuWaNnVhAjwh7ILULv9uGFsG8rrEot4+74sv6zs29WhbMuRTzp+BZggrv72BLLctjtKrl837CJfF5QnGCHX5DMlm4h+O4AfA/ACgP+IiP57IcS/AeC8pmT7at9SbZ+uc10qkgywfJlUlNwqI2XuXOUqG6+pw19WMqPl1l32gLINon1A7Hvfelplv4ichdzb/+6Csby+DmQAcBWKAIdHycDwUD42kIUYzs/2mJL9c5AWh+2+05+SfWhPjK6Iuo+dAXT7zNkm6b0ASGXPjPsiBWc9UuYD9DXpWuQy5RMltwFZ9199Vfsl1QFsG6zVZ6mP721mVeyurz9+M0puAzIwTJQM+EH53KPkU+r+kANoLOwdup2ubLNFZLM1kk2jCXuXbGln90G9hqUa6mNhKHVFyftA2Ka2/VSNsFqA3TeyboOxOfG5L5DlNu1RMnBc62JMIBcQZ9mLY1Iz/3Q1RkztmZ2h5Iqi+ywAFklm9QhFmtaHfVqKTJRUWbaXPTBRWVPlDJk9Hg6RWcUmr2uPkttgeug4e1vlqE1sEe5lp7iiYqU2DxnoBrJ+fRuQgfOG8jlrcjP/fOW7QNg2sHUfmbMAGyoy52KfWZZ9znB2ydofw6NXMNCRhWEUTlTXe/7U75IOO7OPiqmufVazJfeM2NtAbN6+L5DN+wLD9Ltwd5A7DZCH9JjH1L2yMnT5+Mw+hSau/sw22bI1lFxl2eYUk7HFo8MzRhppch5pcy75WBhKbbZFGzxN0PW93SUF9EMj8jYQA02g+gBZv23qUfI5gnRonRzMbVHzPpV+h7QCre2nJR2qyFJnLvM+muL0ki6Zb4tPDnObbAt+tkY8wH4ebJv2BamZ1bMv0E11gRhww1hubweyua+uIaljQ/kYQC56Poap6ORgBvwtjbYm+j7So+iuCkClfJN45zK7ZOuXcY4yFy314pK+Mm0MwG5hKNmg3BYlt0Hy0Ih26P2Y6gJxdZ1HdOza55SgPEfITZ0/LUr5lGf7ylwAPCSXmSz9MmzyKYE+loKhvG6teZG1k5wjf9knWm7e3g/KbRAdoi3k0OoCsdKpgOzadnefbijPQHbr3oD5ENka5886jVob1jtua4NyV1Q7FSjbQFzd5gFk23YzlOfFv4PlsjP6pM2Zci0A7pOZsVeRSZHVZv/dSxnpcvvmMtv6STgzMVo8ZV1Ti5Lb4GvdfiAgA88nlM9ZkwHzvjpGA/3nUcxzAXKIar8utWZitKSg2fJ7G/f3AHJfgA4p13w616TnvlEy8HxBuYDA5gxPBGcPZpsOycwwU+YOeBBn17yIezaDOpb62hi+i33y/u7bTwXiriGhvjCW23ZHyUD/smnfbacI5XPWvQTzsTRkWfZ9lqvvsil9LJJLrnLmPhbGKaG8z4TmPkCW23dHycDzFSkrFeI80+UOWo4norcS0T8jol8joncO9aC65HqTPUfI1HSMlKd9fdZTZmYorfZ5DD3Krs2pzi7ZmxXZX1eXhZEnuRPK2Trby/Pt+89HeVLU/rmO27xf8/m5ouTnEcpDq4t3RBQT0Q+Xt/8sEb25vP61RPRTRPSUiL7L51h7R8yeU2N7ad8SbR+fua0FaB+5+mXcJ0UsaAxlPUTmGKk2WZsVGTZGHwvDVN/sh6HlioZNtT0WX9sC8M89PhaUTy2BYU4Mnrx7O4BXhRC/lYjeBuAvAPhDADYA/gyAzy3/deqQb181NVYIkQBQU2MH11jdoYaInn1/xp+DYh6UQ2ODWnGJdTq2bcZfR3N8XW1FJb5y9ZBQckG5T3TrKzMKdkXDtsfRFh338ZKnAOX7Ei3Dj3dfDuD7yr9/FMAXExEJIZ4JIT4ICWgvHeIxe02NJaJ3AHhHeXH7R29/9ZcOOObU9RjAK6d+EEfUfX5+9/m5Aef5/D7j0B28jOQn/ifxkccemy4GmJJdbVNOPLkB8Frs8bofffGvfHLvBgAi+tCUJtEOrfn5na/u83MD7v/zc0kI8dZTP4Z9dIiVMerU2FmzZs06oXx4V21DRBzAFYBP7nOwQ8BcTY0loghyaux7D9jfrFmzZk1VPrx7L4CvK//+TwD8IyHEXib73laGa2psx93e3XH7uWt+fuer+/zcgPv//I4qnynZAP4mgL9FRL8G4FOQ8AYAENGHATwEEBHRVwD4krYMNtoT6LNmzZo160g6vw7ts2bNmnXPNYN51qxZsyamUcB8qtLtsUREHyaiXySiXzByIc9SRPS9RPQSEf2Sdt1riOgnieifl/+/cMrHeIgcz+/biOhj5Xv4C0T0B075GA8REX16WQL8y0T0T4noj5TX35v38L7r6GDWShn/AwCfA+Criehzjn3cE+j3CSE+757kir4HgJn/+U4A7xdCfCaA95eXz1XvQfP5AcBfKd/DzxNC/PjIj2lIZQC+RQjxOQC+EMA3lt+5+/Qe3muNETGPVro9axgJIT4AuaqsSy83/T4AXzHmYxpSjud3bySEeFEI8fPl37cAfgWyKu3evIf3XWOA2VbK+GkjHHdMCQD/kIj+SVmCfh/1BiHEi+XfHwfwhlM+mCPpm4jo/ymtjnvxM7/scPb5AH4Wz8d7eC80L/4No98lhPhtkHbNNxLR7zn1AzqmyqT5+5Zn+dcA/BYAnwfgRQDfcdJHM4CI6ALA3wXwR4UQT/Tb7ul7eG80Bpjvfem2EOJj5f8vAfgxSPvmvukTRPQmACj/f+nEj2dQCSE+IYTIhRAFgL+BM38PiSiEhPLfFkL8vfLqe/0e3ieNAeZ7XbpNRA+I6FL9DeBLANzHDnp6uenXAfgHJ3wsg0sBq9RX4ozfQyIiyCq0XxFC/GXtpnv9Ht4njVL5V6Ye/VXsShn/x6MfdCQR0W+GjJIBWeL+A+f+/IjoBwG8BbJV5CcA/FkAfx/AjwD4jQA+AuCrhBBnuYDmeH5vgbQxBIAPA/gGzY89KxHR7wLwMwB+EYBqnPynIH3me/Ee3nfNJdmzZs2aNTHNi3+zZs2aNTHNYJ41a9asiWkG86xZs2ZNTDOYZ82aNWtimsE8a9asWRPTDOZZs2bNmphmMM+aNWvWxPT/AzP6ACEw4mbIAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAD4CAYAAADSIzzWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABZ4klEQVR4nO29e6ws210m9v2qqquq93ufc8/j+vpermFMJghlzOSCJwIFMzxiUIIZZcIrEJgYeTSCESQkwiIRIEaRTAgPS7zmYhybCcMjYIariRmwCMiggOWLY/BrsB0w9+HzuOec/d5dXV1VK3+sWtWrVq+qWtVd/dzrk7Z2d3V11erqrq+++tbvQYwxWFhYWFgsHs6yB2BhYWFxVWEJ2MLCwmJJsARsYWFhsSRYArawsLBYEiwBW1hYWCwJ3iJ31ieX7S92lxYWc4VDyx5BNbI1D3C6h/gBY+zGLNtw9p9kSKLG9djlg99jjL1xln1Ng4Wy4T48fJv3xCJ3aWExV/TdegbuEX991HG4p8l2B+l6M/BPJH/ztzNvJInQ+7vf0Lha/KF3PDbzvqaAtSAsLBYAQZiL3FbTxcFi+bB+gIXFnKASZY9oZiXcJZFfCZAD1+8vexSVsArYwmKBmIVAde+1hLzesARsYbFgTEOalmg3E9aCsLCYA5oIs40dYcl3ehARvGB1LQhLwBYbh0GaTSzru93f7M06ydVEwqbE24W3bLEcWAK2WDvoCHbW98yDoE1QRZ6ronqnOdYCyzqmMogIjtdb9jAqYQnYYu2wCid2nfptS55dRUfottF3aaZ44FU41psMS8AWFi3QJfF2jarkDHnM656csWmwBGxhUQMTn7dr4p11e3VZcleOjFc8DtgSsIWFAtPJtWUr3iY0pSurn/NKEPKKYaEE7JBNj7ToFtOSxiy/w3kQ7zwjGUzrUdQdk2UcZyTTv1WAHAeuDUOzsJgPFnVBn4Z0xQTWLJEETdtus/1ZCgNddeFERCGA9wMIwHnzNxljP6ys898D+C7wS8crAP5bxlhtQSFLwBYWFWhLulURA33X6ZSE1f2oz5v2JX+uTY8fJnLgdeMBDwH8Q8bYORH1APwJEf0uY+zPpHX+XwDPMMYuieifAfhfAXxT3UYXSsAEmsvt26b/iCwWC5PfaNvwLFMS7uL8aEPIV4mMZwHj7ePP86e9/I8p6/yh9PTPAHxb03Y3QgGv+mSIxWxYBDHMg3R1759VCU8zBlO74oqT8WNE9Lz0/FnG2LPyCkTkAvhzAH8HwM8yxj5Qs703A/jdpp1uBAFbbDaWfYHtMhmhjoSbPmcX4zD1pZd9zDuDeRjaA8bYM3UrMMZSAK8jogMAv01EX8gY++jELom+DcAzAL68aac2zcXCogabmgnWd52N/WzzBmPsGMAfAphoYUREXwXgfwLw9YyxYdO2rAK2sNBg1chpXuPpeoJw1dBVGBoR3QAwYowdE1EfwFcD+DFlnS8C8C8BvJExdt9ku5aALSwU1JFdm3CsqtjZeZCe6bh0Y5pnuNwG4XEA7859YAfAbzDG/i0R/SiA5xljzwH4cQA7AP5P4hbOC4yxr6/b6GKjIGj1lIVF91jXE7kr4tW9p+sss2njcuuK82y6Gp4FjLG/BPBFmuU/JD3+qrbbtQrYonN0dZGdNxmYjnMeSQhtyK5r0SI+T50a5q+vPxkTETzflqO0sGiNWYhnkGYdhI3piXeaEo+zloVUtzXNe9T9N42p7vi1JWd756uHJWCLjcQ8yFdetqiqYrN8DvUzVJEw0P4zrBOhuis81tUdmYXFktBEvrrXxF+b7U6XVGE2jjr13na7FvODVcAWFjm6IKdlTLy1Jc8q1dulTbIqICJ4PXfZw6jEYstRwl5pVwmbdrLNA3o1bDaBNu3tvbyftmOr25bpmO3vYnGwCvgKo+uL4TqfuKa2gyDFaWNnuyI40+9OJnGVhC3ZLh+WgC06wyzJAMtA+1v3SUVqoiyXEXvbJsSuq4m5VQQ5gOdbC8LCokAT8c03qsBUOZpPmC0ik6wqAqNuPFWvqeOsukBcuf5xS4AlYIuVQ9etcaadpBo/VwugVxFWNRHL75nXrb+56m2vutdVFfNJuNUN9mokYCJ6EsAvA7gFXoD4WcbY24noGoBfB/A0gM8A+EbG2NH8hmphMf9JXBPylf9XEfGis8iqu3HoVey0fvC8VfFVm6Q3UcAJgO9njH2IiHYB/DkRvQ/AdwL4A8bY24jorQDeCuAH5jdUC4vlomqibt4Fburshzb1K9Sxzjopd9XIch5o1OaMsTuMsQ/lj88AfALAEwDeBODd+WrvBvANcxqjhcVCUEduJgkQ+tf025jFxxWv16le05jhKoW/MSDA67mNf8tCK3OEiJ4Grwj0AQC3GGN38pfuglsUFhZriXlmqXWVtmtCjl2tY7EYGE/CEdEOgN8C8H2MsVOSWpYwxhgRae9diOgtAN4CAIdk5/ws1g8qYfm5YopHqXbdaeoqdG1VyKgbr27/mxQfzKuhrXkYWt6G+bcA/Apj7D354ntE9Dhj7A4RPQ5AWwE+b2z3LAA87YXMXn2nx6acFKuEumQLHXzpdtXvua1JeH4REPXkKx6L8W4SyS4CVcEIyjr7AP4PAE+Bc+v/xhj73+u2axIFQQB+CcAnGGM/Kb30HIDvAPC2/P/vGH8ai6nQxcXLnnRjtL1d9zVe4TQk3AYmFwgT8m3ez+aq4I6gDUZgjH1cWue7AXycMfZf5C2M/oqIfoUxFldt1EQBfymAbwfwESL6cL7sB8GJ9zeI6M0A/hbAN7b/TBaLRhctdTYBbSfN6mBCwvPLeGtHvm1U8LrG/sogAE4HwiWf77qTPz4jIhGMIBMwA7Cbi9YdAI/AibsSjQTMGPsT8M+hw1c2D91iXWFCQOt4ck5zJyETmuu7SON04vV52hFtSmSq5OvmHqg65snt6S8SV0QNP0ZEz0vPn83t0wkowQgyfgbcGfgsgF0A38QYq73q2lkxi5lQRQKreMK2Cf2qsh4EmelIrYqEdeOYtUJaW/JV12nrBa8tCZuXo3zAGHumeXPlYATl5f8MwIcB/EMAnwfgfUT0x5r1Cqxujp7FWkMtDr7sydd57V8lON2t/zh7br6nWxP5ys/b+MMCy/4Ol42KYAQZ/wTAexjHpwH8DYC/W7dNq4AtFgb1BF6UopqlFoRO/apQLQlTJdwlTJSvWK5aEW286nVTwo4D+B2EodUEI8h4AdyW/WMiugXgPwDw13XbtQRssTQsgpCnqZurg0xoXughiZKJ17smYbXuRJX9YEq+KqYd47qRcEeoCkZ4CgAYY78A4F8AeBcRfQR83uwHGGMP6jZqCdhiZdD1rPust8x1t+k6Eta9fzqCM7cqTKwEL+SnuRhvkwo2G+PVIuGGYASxzmcBfE2b7VoCtlg5zFJxaxrSbRN6JshMPJZJuC46QhBWl+FoOvJV1a88XlMso5rbvEBE6K97JpyFxbJQXU5xcRNCprf0Yt2mcC9gdgU5DfnqVPssVslVU8HzgCVgi7XBPEi36nZfR3A6NWliRdTvvxsSa3OREOvPMhm3LnAJ2FphBWzD0CyuLEy8Vh2xef1JZVn3nmlCvqpgehEqWSV9rxhzG0vC5Phc9dC0WWEJ2OJKQt9gs5pMBHEVRNaShJu234Q6MpzW9xXvm/UCsQpx3usKa0FYXDk0KTtTQvL6HpLB2H4wmZTrAnWxyRO+b7+shJNB0so2aWNFrGLtCD4Jt7o0ZxWwhUUFBLmp6leGblkTqtrb69etVpZtyLcJgtTblufUwSpic1gCtrhSmEc6cEllVlgRXfjAJhaJbky65WL9tpN3bbAKROwQwfecxr+ljW9pe7awWCEIojAhyl7ooVfjs04Te9sWbYizabwmmOXCtWwSXmWsrjliYdEx2pBIlf1QRWSqH2w2nm5C0GaxHhaFZcUMEwH9JTbdbIJVwBYWU8JUBctq1bw2hdxBeXyaNil0lXzlMfbUSI6WqnhW+2YVLIlVw+pdKi0s1hTTqOCZ91lDoqa2g4jWUNOm5wVLwmNYAra4EqhTb1WEYGI/9EIPo4qQrlmz5NpCVr/qWJdxcVgFOEQ2E87CYh0gbu+bJrjkzDKgTHZ1/mtXGXGqP920X91Yp/WJ511U/qrBKmCLjcc06rcKJsQlq80qFdy21oI6TlProWm81ePbjEI7joOVroa20MuZQ4S+6xj/WVgsG3X2Q90tv4p5xtuajqOOjNuM7yqem0T0JBH9IRF9nIg+RkTfW7PuFxNRQkT/uGm7K62ATb7oTajYZLEctElsMIHsB7fxXKvUZlPniyZUEa4Yp26M0zTsvCJIAHw/Y+xDRLQL4M+J6H2MMbktPYjIBfBjAH7fZKMrTcAmqCNpS84WXaIqFbmJaNXb/C6JzdSLXvSE4KrA6aggO2PsDoA7+eMzIvoEgCcAfFxZ9Z+DN+78YqPxzTyyFYa1Nyzafte6W/GJiIKO/NdpMI2V0TRZV/d5bMjYJIjoaQBfBOADyvInAPwjAD9vuq21V8DTQndiWsV8dTArsciKclkhXibqt4pc68LnTLAuBdsdItNMuMeI6Hnp+bOMsWfVlYhoB1zhfh9j7FR5+afBG3FmvIlyM64sAeugkvI6/MAsuoG2A0ZLtWi6nzYtgHRCYdoxNNkQ8yqfuSZ4wBh7pm4FIuqBk++vMMbeo1nlGQC/lpPvYwC+jogSxti/qdqmJeAaVN2+WmK+eqgiY50KnnYybtrxtFW/6naaxmcn4wDirPpLAD7BGPtJ3TqMsddI678LwL+tI1/AEvBUsBN/6402nY+7xLTt4Ge1S1yf/17TmP82r1JWHBEQdFNu8ksBfDuAjxDRh/NlPwjgKQBgjP3CNBu1BNwxrI2xWSipy6KGrjMmMwMVrK43t/EZqF95HCWlLi03tUnWxQfuAoyxPwFgfCVkjH2nyXqWgOcMO9m3PMwz2qWKhHXoQnFOm8Ys1O+sWFcbggD0nNWNelrdkW0wbFjcakIO8VJ7qY3Xqf+u2mTHzRoi11b9ymNfxZrBVxH2W1gRWKW8GHQZ1yqr4EWhjT9tqn5lhb5pkRAOUVce8FywuiOzsCp5QeiiStki2hAV+1Kz3BrUrxd65WQMg7F2VbnNoh72rF4jWCJeLHQTcCYwsSFmVeLNxX/MfidtesXZrLjuYS2INYQgYWtRdA+j2Flp0m0ZNkQVqtSvjK7Hu+qREERAaC0Ii3nA2hOLRWkSy4DsqtDl7b1uMq1K/TY171RftzbE/GEV8IbAquIydBcl3S102yaXOpLVqcqq0LOmSa5pL6azXBA2GQ4IwQoLlMaREdE7ieg+EX1UWvYjRPQyEX04//u6+Q7TwhRWEc+OWUK06kiva0I0Vb9evwev36sdi+lntj5wtzA5U98F4I2a5T/FGHtd/vfebodlMSuuMgl3/dnrsspM0Au9VqTeuk1SS/XbJjnDxIa4yr+1WdH4q2CMvT+vf2mxZlj1CZJlQyaXWVsGtbEhTNB3RfsumsmL1SlfNWtv1tKUq4xNnoT7HiL6y9yiOKxaiYjeQkTPE9HzZ9lmfsmrDBtLPB3U8KxyFtmY1Bblvbq+y+N5+16lop4m7Vi/HTv5tihMe0b+PIDPA/A68DYdP1G1ImPsWcbYM4yxZ3YdOymwbFhC3iy0uQCoarhLrOpvycmroTX9LW1807yJMXaPMZYyxjIAvwjgS7odlsWisKonziqi3Npnksz0E2CLER1Vk28A4IU+vNCffH3KsDk7Edcdpvp1ENHjeZM6gPdA+mjd+harjU0KYevygrKOBWtMSbUqIWPTmncSaKWroTV+W0T0qwDeAN4z6SUAPwzgDUT0OgAMwGcA/NP5DdFiUdjkSTsT1WbWQWJS+epIaxFEVhvyVmM3zGtsm/z7mRdMoiC+RbP4l+YwFosVwCap4S7QRHLJYLTA0ehRN/mmWg91Y75KnTLagoieBPDLAG6BC89nGWNvV9YhAG8H8HUALgF8J2PsQ3XbXb97LIuFYNPVzLzSbJdZG0JcLKrUrxf6SKJY+5oairYpZSmJAN/rxLNOAHw/Y+xDRLQL4M+J6H2MsY9L63wtgNfmf68HD1Z4fd1GV9ccsVg67AQdh0l416LTfs2KBo3VrxsG1esZeN2mF6xN/c0wxu4INcsYOwPwCQBPKKu9CcAvM44/A3BARI/XbXczj5ZFZ1incLUuxmlCRjKxNXmtpts0hRoDLC4OtZlvdeS74fUieEsiavwDn+N6Xvp7S+U2eWLaFwH4gPLSEwBelJ6/hEmSLmGzj75FZ7jq3vCsRCUSO2aZ/DK6OLSI9Z3FLlnXHnE1eMAYe6ZpJSLaAfBbAL6PMXY6607XQ9pYrAzWSREvC/WTYovRPEKl69Sv1+8ZjWPajLhN/X0QUQ+cfH+FMfYezSovA3hSev7qfFklNvNIWcwdV52IdYkNppiG2KrKYLbfzvTjXkcQETyn+c9gOwQe/fUJxthPVqz2HID/hjj+AYATKV9CC2tBrCHaZCLN+zZx06MlZDTd3reJr/V7LgZpNyFfavRDFcm6YYA0GnayzyuILwXw7QA+QkQfzpf9IICnAIAx9gsA3gsegvZp8DC0f9K0UUvAK45Z0z7V98+DkDfNH27TJ20RmNYKEPaDIOSqEDRT+D0X8Wi9QtPEJNysYIz9Sb65unUYgO9us92rew+54uDlCLvPuRfbnc+2N9+WaHsLX+e1zvIdTGM/mMDrexsfGbFKsEd6hbDoIidif12r4qtkSwDzzYhrbJlkaD+YQFcXeNqEjFX5DRDByONdFiwBrwCWXV1qHkS8KifgJsIogkGxHyrX8x0IGrBpyIuHJeAlokviVZXSNF5d10S8zt6waUJGla9qGmPLL1SL8VV1ZLxJlc/WEZaAF4hpCHfamgV172siZ3mcXZDxIoh4071nAfnCUGU/6GJ/3dBHOuMknIp1SMbgk3DLHkU1LAHPGfMkXZPZcZ1/10Ytd0nG8yLiTSXfWe+QxoR8tWJ/1wmWgOeArkm3iWirPMEkSrTvVUlZ7NtUGa8SEW8q+eqwCuFxbULRVmIegADXTsJtPuahdKuIV9sHTPEsk0FSWi9RSg0KyGS8bkQ8T/JNBsladsToCnJSyaaUplxFXN1fWEdoS7wm9oJKvNVNFsvLdQpJzGw3kbGOiIFme6JLjxgwJ+NVUL6zJjbMgib/19oP6wFLwDOga/I1Id460hWvJYOkNRnriFgecxURzytygm9TT8arQL5N6Loo+1VW47OAYOOANw6rSrzqe2UiHkVJiaDV9VeNiPk2u/GKlx1nvQpwfd0FefntlK46LAG3wKKJV6d6esWtp550dc9NiVi1JqoiKEyiJuZBxFcJdZ+5KQ1ZtR905AvIxYUSJFH7Ma4DeFfk1b0AWwI2wLKJ10Tt6k/K6q9XR8RdqWFgPWJE1x0m8b/G2wptQ85lwBJwDdoQ7zQRDSbE20S4Yll4uA03DOCFPobHZ0iiGMlglIei+ROepK4DbtdEvIhKbOsOE3tlYUXcNRfkWSMhViIUbYVhCbgCpuTbNn7XVO2K5WJ9lXBl9RMc7MINfWzdPIQb+ri8+xDx6WWJiL0QE2RcVb92WiIGFpfUMQuaLpajSD+JCfDIBzWlt85LrUv1neYYtCXjKvuhdh8N7enXqSwlgcFhqztWS8AKVol460hXqF039OHvbSE42EXvNu+Gsre3j+H9V4r00ySKkUbDCTLOR1Iah2xNAOV44iYilo/LotOdTfYzK5LBqLYoe5u6CvMiMBt+Nj8Q0TsB/OcA7jPGvrBinTcA+GkAPfA+c19et01LwBJMTtYq4jVNmpDJTeftyorXC70J0h0/5sTrhQGCmzfgHNyE99htwPPBLk4Bj68zPD5DfHqJNPLhRjG8kBOxKKHohfrCMaIsoXxbOg8iBtbDqkgiNbGlOga4KgQtGSRIomQuSQ0m/q/re1ewHgQDpZ1Fe7wLwM8A+GXdi0R0AODnALyRMfYCEd1s2qAlYKwH8crKxvU9BAe78Pd34RzehHf9NpyDG8i2DsHcHmjnAn4Qwtk5gLd3H979VzA8PssVMSfiNBoq1bwS6H4OXRExYK76dN/HNCe5bjvTFjeSIZOvif2QDJKJOrtdwaT+r1DDaRTDrangZlEPxtj785b0VfhWAO9hjL2Qr3+/aZtXnoCbyLdLq6EpmkEmX9Vm4K97cEOfq95XPQH3+m24hzfBdq4h2TpEFu4jIxfe8BSO66PX30W2e5CrYU7Cab6NNJo8EVU1rIaviXHrJmnk41Gl8NqoYhWLiuXVpSCncdYY+rXoso4m7ecrw89C/+r0hmMMlBpdcB4jouel588yxp5tubfPB9Ajoj8CsAvg7YwxrVoWuLIE3LXq7Zp4+et+oXgF8cqql64/gWzrAFn/AJET4HyYIckS7Pg72N7fhhPwP1kNX7zw0vhzSIpYWBMcZTVcF0esqmH5+DQRMTA/L3QR0KnfrjPgZJhmw5n4v24YGCnhNo1G1xwPGGPPzLgND8B/DOArAfQB/CkR/Rlj7JN1b7hymFb1mhAvMD5RTIhXPNepXpl43dCHd+1GSfWmW4dI+tdwHqc4jRKcRClGWYaD0EPku9gJDtF3vJIa3vZ8JI9yNVxzAuq84WmJGJiPKl4EVO930WjTkLN9vzrfZsN1i5cAPGSMXQC4IKL3A/h7ACwBA92q3qZ04aaMtTZ2g7+/C/fWU3ySbed6WfVGKR5FCR5djnDvIsYwyXBz28djWz72QxeHYTdqOMkJV9gPcv+wOltCPX4mqhiYDyF34v9qIiG0oXwLVI11E3BNatjr94zHupZV0RgDsoV9F78D4GeIyAPgA3g9gJ+qe8OVIeCuVG9XipevY6B69/aLCAd2cBtZ7vVepITzKMVpnOLR5QgvnEQ4jxMMRlwF558KAJD6DvbCfQC8Dbbn+UgAbAMY3n8FSTRsmB2fnKAzUcPFuhWqGDAnZB1MSXrasp91MLUf5pFd1rUi90IPaTy/iblNScYgol8F8AZwv/glAD8MHm4GxtgvMMY+QUT/DsBfAsgAvIMx9tG6bV4JAp6GfNukC5uoXXmZqeql7b2S5SDI93QEnMYpTqIUDy5j3L+IcR4neHQRY5ATWs8Rk0ZCATnY6V+Dh5yEb3NaDTwfbm5J1EMfN9ym4E/xnhpCVlGnuKZVtHX7nIiBlp/ndoRMvstUv3WWQ9sEDNd3SvUgmpIx1gcMlHRzcWGMfYvBOj8O4MdNt7nxBFxHviaqtw3xNpEufz7O269SvW4QjCfatvfA9m8j6+8jCfa43xtnJfJ95WKIR+cxHl5U/dDGJ6pKwulRWLxWR8Lj1uvtiFhdRz1OpddrrIsqmN4ST6Nyy/upj4SoU7+jKJlrDPAyIGfDrX4s8OpioQScscV+SW3Jty3xiuWqxSC/v454+XuqLQfq73LVK5HvoyjFcZTg/kWMB5cxjgejgnxPLmNcxiniZJIMRpmH/G6pRMLiE5Mfwg3u4/Leg8njEgalsCWe0swn6ITnW1eLWI0lLrajKKy6W+sqVTkrsZruW55kVCccSxOVUuxvFeJROjfCqvJ8vdwnTuPqcdmCPIvHxirgKvJto3pNqpLpUob563ri5Y/1qrewHHYPgJ3rSJXJtrO4mnzvHA9wcm5yqyWRcB4h4fUCZH7IfeEgxPD+2JLQddOtUsNJNJnGrB43oJqQ1feV9jkFOXcNWQWbWg91CRiL8kU9aZJummy4tQ5FY51mwnWOjSTgacnX0xAsYJa5xl8bz47XEa94XGk5SH7vkDk4j7NSpMN5nOB4MMJLjwY4GYzw8HyIk/MYcZQgiVMkjZNTOQkHe8UPwAHQC0IkD+5CnK7Nk3MCk0SsHkOgmZAF6uJd25CzTBpdTlzJ2y2SVqRlsvUgnq8LgXl9b25ZexaTaPxV6gpQENE1AL8O4GkAnwHwjYyxI5MdDtJsrgW225BvleWgi2oQy6tiePnj8e2fKfFSEMI5uAl396BIJxaWwyDJcs83LZHvnZMID8/jCfI9Px7PojzEoPY4JRkfz06wB9f1wdweV8MA0iBsMTmXby+3JfIjVVquHtfitQpCFtARQZ23PLFuS9Jt2/anyfedXH/ywtiVFaGbkKuyI+aRjryyPjDLALNMuKXA5Bf3LkwWoHgrgD9gjL2NiN6aP/+B7ofXDrOSr4nqrYpoAPQNEVXiLZbXWA6pF2on20Skg0y+D48GiAcJossRoosYaZohiVPsIGwkYQAYZcCOHyDsHwAAyOvB9aQLSRBofeEqyEQsPGL1dfW4Fq8pRGpKzG1IeVoI71c3GVfn+6rLpo1v7rolfV06sojx1kVCrGUs8Aqj8VutKEDxJvB4OAB4N4A/QgsCnocKblN4xdRyMLEbTK2GYnnAHzuHN+HsHpRCzFhva8LvPck9X5V8X3p0icuLuES+w8EQ6XAAYA84hjEJA0Di+djeuQEn8ovJOccPkTy8iy2gIGHX94qJHLmYj6eoqrIiHqvFNoRcrGNAzKY2RhfErJt0041F7EtdZyWV4pyxrFhgAgMlm+cB32KM3ckf3wVwq2pFInoLgLcAwDVnPpZzm0ItdeRbF91QVZNXPPb3tvi6FYRLQR7ulatLQb4Id8H8bcDxwNwekpQhyRhGGT9Jh9KPdhCnGIxSDJSZ7CROkaYZ0uEAaTxAEvcRhD0koxR+3ytigy/jFNcAjLIMwzTDMMkwyvj+AEJGLhzHA1wf1AuAIISzewAWRwgOhiU7oomIxxN1+cceR7vxMReV1CZvkye6d2gIVyU13eSfDnIGn+413fZMrIw66wGoD5dbFiGb1oMwxcraECuMmRmRMcaIqPKo5xWFngWAp72w82/H1HZoazkIu0Hn8epieIOD3UqyBXiYl/zY8UNQL0AWbPNl8SUcAP1gD2nGIALE9hMPgevg5raPJ/ZCnERJjRWxyz9738PWto9XX9vCfr+HV1/r46Df4+nJgYcd34Pv8ePW9xz0PULfc+ANT0HxJWh4ATYaAp4Pxw+R+SHcIEBwwEsaemGAJL99rSJi+XgJlF7TVPMShK2S9cR6eWcPFSYqm+97MllEXq7bRtU4Kl/TqF/ZfhikWSuyqoqtnhWm9SB0kRDr1BljVTHtN3qPiB5njN0hoscBNNa9nAfakq+J5VBFvFUVygTx0vbeBMnKKEhZPN/eQxZsg7ljIqL4Eh74xBiQQpBwnPATdZTxOg/DJEN0yFVslGR4eBkXhAwA13d8XNv2cT0n3P3Qw3Z+DHoOwcu7xPYcQt8j7Pgu3CTiF4HLYyAaK10KQpAfgoIQqqEjiNgNfaQ5EYuaEsBk0fK6mgWiPnEdCpWt1mKoIG5VZeuUdReREibqVxDVIGWlW3FBwstM1a2rB7H2GXHm5SiXgmkJ+DkA3wHgbfn/3+lsRIbognybVK9JaUja3oOzc1AQrONXy7cSCYe7gDtJODoSHnlCKbm5XcAxyhjihOGp/ZCTcsJJWajcbd+B54zbcvPH0rFxuPJ1kwjO4HiCfPmbfE7CW3v8aRCCDSO4QYB0OCzFCYvHrkTGdUhr1LKKJIq1BK4jbpWoVYIup0JPNiydFbL6la0HmXxnuVXn8da9Un86Xa+6NlDrQdRZNXYirjuYhKHpClC8DcBvENGbAfwtgG+c5yBVTEu+ppaD3GEY0CdOeHv7oK097uXmRc/bgHm9kvqVoZJwH80e90jikJ7DyRVAoXb58snt1JKvWGf3AGwYgcU8zE1sRT7agnxlVSxQFUtsUq9A2Bs6Mk8V0kmKC0EgraN2/oDWn9Zltc0C1XqQCXeseptJOI3TTmOY66DWg5gGK+cDM8bttBWFSRREVQGKr+x4LEboknzlKIdgzzeqTibsBmeHEy9t7/GJNK+CTCtmYJm/Xfs5yyRchtzlVWT5EIuBLAElMZjnc/FcvKH6a9bZDhMQKjjOJaQfgsURyPOBJJ5QxRNvN+hXpqLwmCtUnVDaxXNFcafKpKAgZRF6pZKytOd8e+2IWI184NtIS+Tb1vedGJmm0lwT2h77Is26IuFlXRJK1gUbmQlXRb6mlkNwsFMQL9+OXvVSf5f7uP42mL9VqjsqKjAxH1OnQgoSLiHfByXxmHyHF6A0BhucgQ0jOEHISbMXgLl++eKg2h5pXE++ORw/BHIlXIKGjN1gehklCLzOvhBKW0CnuAU5j31pfbicwGT0hhkRa2N/NUV3VI+3rIjbq+6mDs06eGHQKg25Lh7YohusFQGbqN9pyTc42G2terNgmxNwbwtpbjA6LAWlI7DeVmH+Mw0xm4LiS/5fkHgag5IRJ9zREEhiJA/uIju+X9T23br1WHm8UlQG9ThxMUHEBuQLcP/aAS9yKp6rZCwoxSgoULVs8uPiBfUhEEJpCwgfGpBVL3+9mCCsIORqFTy2KYQ9YaKIdUkXXfm+dUijYWNX5OI4hH5tQZ620EVCVNkQS4kFZqz4ba0i1oaAuyBfNaMtPOxXWg5FdEM+AVWlejN/G0PmYJgrHu69+nzCSyFl/iQ/5JKS1YHSUZFCqRIuG0YYPbwLdnmK4f1XcHn/CJd3HyI6usDwNMb2rW0EB7vYunmA4GAXwc0bxWcQk4S6ULlaeD4IgCsRr0rGlKth1ExEVsLgPYXSFsgVt4CsvHXErBKyqo7rUEfE8mSVUL8qKek84GlQFYLXBl20p7+KE3G6sgzK6/81eEIaATgD8M8YY39Rt821IOCuybfO7w0OdgvV6956qlC8ImY3U4l3lEkdKACAwXWoFK3Qc1w4SgwXAWXLQqNwARSkmw0jJA/vIjviJSPj00tc3n2I8zsnuLh3icFRhLOHl3gUp7i97SPYC7D7qh1s39xCeLiNrdvX4e9tldSxHJUhR2+UojVqCNrxQ2RxWQUXJKyBGppXBZP3szgajy2/iMmqXKhkOVKjFDanIWHZL65K01X75AnoCu4I9VtHuCaKUK0y1xY6O0e3TM1KFKVFZRti3XxgxrJJ22x6vAuTZRlk/A2AL2eMHRHR14LnP7y+boNrQcA66Mi3CuLHG+z5E36vIF9/b6vk9bq3nhpnqgXbSCWrYZBkiIYMYw1YDTnyoPBs05gnPOQqV0zUlVQu+O12Fkf8f24xDI/PcHn/GBd3HuHi/iXOPnuO4ekQdy9ivJzfAj+KMzwRcUIYHEXYfTxGdHSB7cevIT69xNbNQ/j7p9xKASe2Qs36Ib92AxMELZOt+FGrZKk+nyDNKVD5PunuQT7J1IlAWQHLz8Wt+Pj1fLlc+ziPllCjJJK8yLootl7sS5p405GrqffL0/XHv2u5zjIfw2QomoAaXSJbNuNxVlWV4+2n2pBsGxtinVFRlkF+/f+Rnv4ZgFc3bXNtCViHOt+3inz9va2JzsO9x58eVyZTiTca/9BklQuUQ75klKMW4iLyQCZcAMgkwmVxHvaVWw7xyVlhNZzfOcHwNMbZZ89x9vASLw8SPIrLWVYvDxIM0gy34xTJIMHuq3YAjMkliYYIDvIJLymDj12ejpXl+ZhASxrfgBCLdfVrTgdl+6qymZV4+bJhsayJfEtDa7AeVDJSyXfEGHpEyjoMvjTPVtRRLiIVqifi5N+0uJC60mfWhQCqGXHzUMEr3B/uMSJ6Xnr+bJ7FOy3eDOB3m1ZaeQJuKrJjYj3oyFeOdBA/1N7tJ3lN3utPINm7WdTjHSYZRjnxqqRbBZWMKR2VyBfnDwvCBaAl3XTI6/Em0RCD+8e4uPsQ0dEAF/cucXbnHI9Oh3gUpyXyFeAkzH/o13JSkG+T0yguJVDwYxiUnrtBAHZxOpHFJ8ZrhGGkff8sMFG7AvMgX4GqVkNV2W7j55PkW4V4lBYNpYoU6oir1KaUbUBSv8LDD6uP15jMxyq4LgJC9oFXNi2ZZRM2WQUeMMae6WKXRPQV4AT8ZU3rrjwBqzCxHurIt/B4lYw25/Ameq96GuzgNtKtQyT9aziPeYdhU9JNMlayHHoOFRNwKvkmD+6WCBfABOmmUYw0TpBGMS7uPsTFvQuc3TnHxb0LnERJoXLrwNdheOLhZYlMtqMYw+Oz2ipuwFlOymfSsvbopmnQGKakK7+mEi9fT2M5GJCvbD2YJFzIkL+vOuLVoeipZ+gHF9+X53NvPokLQtbFWasRIbLSnSYkbRNtiCYQ0X8E4B0AvpYx9rBp/aUQsGkpSlX9VpGvrH6nIV/31lPwbj/Fy0Lu3MCgt1uUhKyyFXTQZZoVyJIS+WbH90uEC2CCdIfHZwUhXNznE20X9y5Kfq8JhEK+lp8M4lbW9Qel4wNIZTVPL+GGPuLTy9Ltqo6Ep0m0KLanhJSZoo501ddNVS/Q7PkCkzUfVOtBnnirqvXQlnxliHG4vqO1IOSKfEUtDxGvDX5B9EL1+Kle8jjiQ0e6sxTnWagNkbEuJ+FqQURPAXgPgG9njH3S5D1rp4CB5spmpuQb3LzByffmk8i2DpHu3MA5fJxHKR5c8qpjAIrqYT1Nem8VSup3dAnn8giIziZidmXCTaIYaTQsSFeEPSVRUun3muJRPFZn+6J1fehJMdGD4nhWFSECAFeavCliaxUrwxRu6Deq2TrUkS5QnmiqnWibgnyrrAcduiJfWY0WywajEnGWLpZBUKhfII9QAYBhpImdniygxOs516vgqxSOVlGWoQcAjLFfAPBDAK4D+Dnifn7SZGusDQHriquraZmCUJrINzjYLU22pbs3ke7cwEVKOIpSPLgcFY0ve46DwHOwH3gIPf5423cn1K7nEEYZQx/jamMy+dL5I6RH9wvyvbx/1Ei64lY3OoowyFXvNOQrMEgzfPo8xhNphtv3+Mnj5cdMHLvhaSwlqYwAXMDr9zDEJCGLwH6BNE6M6juYQiVYFTqyVmf3TVQvMBv5VqUb6wjZhHzH78vAu/VxH1gID3kyTucDy5NvopJdCUlc2EKqBVGuraFO+iW1RXqASRW89KQMlk0dfTOxqeqyDOL17wLwXW22ubIELNsPdZNuAEoEUke+4rFusu10BDyKEhxHCV44ifDSyQCPzmP0fRd938XDnovAc7Dj50TsOtgPPfQcp6itKytjrn7jEvmmD+8iOT0pohmaSFcOaTLxe00hfOFrvov+RQy/55bIGCir4+FpPEHIqWpZ5FBJuQq8L9n0lkOxXBNONWlPVKteYDryFVCth/HjsvUwi+XQBBG7LB93Wf06SiSLsCIwHBZWRRonEypYhKVVWRHChrhKKrhrrCwB66CbdJPJV+3TJn6UQvkK8u296mneg23vJpL+NRzlfu+98xgvnER45WKIT907R5xk2O/3sOW7uLYjftx8hhgATqIE+6EHJA7goVRn1xlewBmcwBleIBHk++gVXN59WMpaU+NJh6fDUhzpIGUzqd4qCEui7xL6cYp+5KB/wU88lZBVdcwJSPjH8YQ6VmFKyqYwIV3AXPXy5e3It8p6mFb1jt9f366rlCyRt32SfWDxO5fVL+W1QdwgBPPH8due58O9OB3bEVL9E+CsOD46KwLQ18EAVjgiYgWx8gRsYj0IFLUd5CQLyXYQ5MsObiPbuYEk2MNRlBYt3184ifDC0SVeOhrg5JIXOPdv7mDLdzGIU/SVsYTe+ETpOYTD0MW2y+AMHsE9vQ+cP8Qo93wvXnipFEqWxhmio2gilOkkSgrirQrmb4LpCT9KUgxSQt910HdzMnbHt7xpnHIiCj14UVkZAyhUOwB44QheP1eaamKApvXNLLVrgckZe6CscHXr6QgX0Ec5AM3EW2c9TKN85VjgOhuiGPthzcZk9btzHQCPQYfnF9Xr0rNjMD8EXZ4WleyGx2dwfX4OXdx9WDouukppJip4mTYE69CCmAdWnoAFqtSv+K/r2SaSLHTkKyIdHkUJPns6xP2LuES+dx4NkIxS3DkeoN/jNoSMIFcpwoK4FrrYTc/hnLxSshyGn325lEChWg3i5B5cxCXVOw35TnObO2IMSMVJDogTfpAm6LsEHU2OJCVURcYyBDHLEKp5GlQV0NG11tERrbqcv3eSdMV6KukK6ArtTEu+AiPGMErSnIjL34kgYXnMwV75GHphUEqsoSAEyzuviMxLZ3hRJmIRISERsYAgYdmKKPZVE5JmVbAZ1oaABWqrnEnqV9yKVZHvcZTiNE7x2dMhXj6LcOckKpFvHCWILmJ4PRe4Md5/zxmr3sDj5Lvnu9h3RvDufwbZ8SsYPbyL0d0Xud2Qpw2rdgOACZ93kGZ4FGdzVb2V700F8bJCDWtP+igpKaEqZQzlPXoMKu9mVJhkXlVVLJPfqxLGSPOaqnars9vG5Nu152t6YZQ/s5gAFfaDUL9ZkDd9zRJQ0kPm+hNELNSwIOItaSwyCcuUIU8GrqwXbKuhtYdpl+Mi5lfM2vd7RZabv7c1Qb7p/hOInADHeZjZy2cRHlzGWvI9P46QxCm83hAD5QQMPQeh56DnOOg5hBtbHrx7n8boxU8hvfcCLu89KOyGi3sX2roBcuqq8HnnbTk0bcNUeaVxWtyRCEJWyVhFVfLA8LSbk6MuOUCdta+q4QtMWgwCVdlsKvl2OdmmJ2FAfCc6CA9X+L8s2EYW7vOO1yyFE19oidjN6zkLIvY8v5KE5a4ZqgpuS8IrnJq8EKwkAQsI/7euu4Vc5cwL/cL31Snfc/g4ukxwEqV4+SzCy6cRXj4a4OFFjDvHA5ycxwX5Rhcx0jSDd+ni5DLG9W0fyJtYBK5TqN8bWx784xeR3vn/MPjkxybqNeiypmRlNSbe5ZHvxPZqlNd4xbT4fgQhy2SsQpDzvNCUnaVT0DqikJtnyqgqqD4v8hWYvDshiO9kFCXQZiN7Pm+TlavfIXOQpBk8x0Ev2CvFp1cRsdC6OhKWVbeqgmXINsRVzIozwUoTcB3kW14Ahfr197awdfv6BPmeuTulGN8m8r08PkYaDwDcwp1HA9ze7wPgtgPArYhroYfd9Bz08AUMP/URHH3yxaJKWTLglciqbmdn9XuB+YU2VSmvQVrOYhyk/LP1XQLyz+VXqJ/h6bCxat20MFVcdZ6kKeGqyxYRZjb+PgD5OxEX9WQwwvZtvyijKkqNCvXLS6YCPYchcYgTsRfCyX1hHRF7j6GShEUtCjk1Wi7Ss1JWBFtcJtw0WDkCrrIfdOnGYjmPfvARHOxUer5Hlwke5JEODy/jCfK9PB0iuhwV5Ds8f4R0OIDr9xFHByUbgrd5d3A9ALw7n8Hw03+J40++iPt/8RInXSmqQVVUaqzotCFm8zzhi+2XSJhjkKYT39Eg/wj8drJGiUaJsb1kgmkVVdPFrjqjTU/S8/4uSvuQvhNVcXphMA47k9TvaZwgyVjRIbvvkZ6I83olmeuDXB/j4pRlEgZ4JI/Xr0/KAOxkXBNWjoBVlNKOFetBkHJ42M87QBwieNUT2gk3Qb4iweLOSYSH58NK8o3PHiG+OAUAnB/fxMkl9yrDPBPu8Z0evJOXMHrxUzj95F/j/l+8gAf//uFEaBL/X6+e2mIRJ3yxnzTTKN/x/mVCHaTtTzRTQl7E7WubfSySfGXIF8Y0LzUqg7b2eBdrSf0OkgxxwuDnxDvKOBF7DiH0FCJ2fZ5ABN40oI6EgXFhollU8Fx94CxrVWNk0Vh5AlahneDJQ878/V04OweA54P5vHuF+AEOkwzncYJBnOIyTjHIHyej/C9OkaYZ0niAdDhAloz443iAJH8PAOwHHq6FHvqjM9DDFxC/8CkcffJFHP31Mf7mdNh4KzsrlnHC94gqP8egJeeqSQar5AsuIuyvCwgSVpWlG+Z1HzwfzO0hIxejLEWcMN61JU8YEvAcQlrRuYW5PcDrgaSO2G6QRxcVWXNmKtiiGmtHwKNo3BlATPpERxcIDi5xee8BtoMQbPcATngM5vnY6V/DKAMufA+PbfkYJrkqlX68mUQCye41AEAaDxDsXoO/ew3hdg/XdwIEeS2IJGNItvbgHNyG/9Rrcfj5PNrhNafDIpECQD5p4haPVazDCS8SA6atYNf1+l2givTlDhRN6wIA5jTx1oQe8YQZv+fyO8F+r4h+EOVNKR3BTSL0nB5PlU+coqBU33NyO4L3MBTWRGlyLh3BGV4guzjltaovTxGfnOVV+s55DZM4W/luySxjM/e/mydWnoBLIU+DcW+s0uMoyWvb+sALL2EbvESROJ0O+9eK7YkIBgB5goWHlwA4LvGYXwCe34Pr9zE8f4S9x5/G1l6Ax/dD7ORxlqOMYZBkcPefgHf7EXY/5wVcu3+M6CiCe+dc25ZGPwu82iE4deSrI079svkQ97TgF8WmdcbfiRiXnoidhZKwIF6esUhFurhAGsXw8o4qNLwABdsIgkP0PQc9Z+wBj60HiXiTUalVlnN5BDY4Q3p2jOz4PpLTk6Id1vD4DNHRAEmUaBNXAPOJ0auOlSPgcahNGWqIU68U7sRVcFGLoIaEReGcnuOg77vYOudrPPRdnPTyIiSXLlzXgRv0sb0X4vphH08c9kupx2nGkPohnGtPwnvq87F77wGuH58hPAxxducc7lEEP07RlzzhvqtTvWYkvGilpZKvCeHWrSugSy0XmFeUhEAap6UWPyrGIVPuBOHqvztgUSSskm/fdRAe8iA0NaMwiyO40Rlo6wBBmKGf37XJqrfvOSXiRZbwxIw8CoINxqVTk9OTIqloeMxrRJiqXzsBV4+VI2AZcR5rKqtgAdmKAMYqWMC7/woAPQn3HCpKS4r6Dr7nYMt3cQeA57vweg68noudgxCPH/S5/eDy5IskYxhlXAk7Ozfg33wS25/7uYhPL+GFD+H6Di5CD4OjCG6UwC8V7OYkxYuu0MSyZaOOeKsIV35NJVhtCnlN9tss3X+b0EQYrqTeBFGXCURV81Jo2Bwn5XTk23cJvTwCqIS8nRWSGBRfwIm3EHo7SLOy3eAmUUG8lK9LyQiIzsCSWEu+aTQsqvfpsgtXUf0yxlpV3Vs0VpKATVSwbEUAgOv7eXHqIdLIH5Ox50+QcM8BPId7ugUR+25Bxg/P48KS2NkL8OrDfikFGeDth5KMoee5SA5fjd7jr+Dg4rTIwAsPxy2EoqNIyiQrE/E4xpYtPSuoinzLJFw+DirxqrfFAiqx6iZTdet1BbmrsIoimUDTdFLWln5PR8hKfG7HariKfAv/V/OZWG5DOMMLMH8b/d09jPJ2WYXqHV1y4k1H3K5IY7DBWVGkJzs/Lsg3Pr1EGg0RHV0UpVPl4waYpYpXYRWEhwmI6I0A3g5OJ+9gjL1Nef0pAO8GcJCv81bG2HvrtrmSBFwHnRUBjFt1J1EMt2S6v8zXw5iE98J9uPl0b89xisI6ouBO3/cKS+LV17bw+H5Y+MYy0oxxFRzuw7n1NNyzY2wHYVEQOzg4R7A3bh+fREkFEcs/wOWQcBP56tQuMC5dCegzFVXSK4US1lS16xpV+xKNJ4vnoT6sSqB8s59C9/11QcJ1xFuUCg1F/75xGVA2jEBbe/zxaAiKL+AmEQ8xq7IbRkNkF6fI4gjZ2THY5WmJfEVrLGBcdKlQvcpdhWkq96LAsqyTSTgicgH8LICvBvASgA8S0XOMsY9Lq/3PAH6DMfbzRPQFAN4L4Om67a4NAetsCKCiVXc4bjjIlXCZhCmJsdM/gLcVoOcQfI9bEi84PGNm69wtLInH98fJnrIHPMoYvIzg5io427mB3pOvRbZ7ANrag79/H5f3HvD06P5DeKFXqGGAn8jxSCQ1LJeE68jXlHh13ahlyAQoCLaKFKtarc+Cqkppri939Mj4Z8kJpq4RJbcpXMgkPL5zm42Ejci35k6BxbzbthuEY7WbehN2g1C96dkx2DBCdn7M05A15CusBx1mUb9rhC8B8GnG2F8DABH9GoA3AZAJmAHYyx/vA/hs00aXQsBNRadlxFLNAQGtFZGnR3qh3AGBn1wyCbtxBO/mk6B0hH5/Hwh3C18skHxhYUk8kdsPE+SbF18vVLC/jXT3JhzXRy8Ikfghtrf3EBy8ktsSxyU1DEBRw85SfGFxsgPVqldnMwCTxCvX5RDQka1MsLqSlFWF3cX6VeUo6+Ap7diTKJ4gekEyru+P1bxCxiryUuboSgmbkq/wf+XPkERD+Pu7ALgSxi6vAewMLybKUQrVm54dc8vikoebxSdnGB6faclXLaWqYpW83ynwGBE9Lz1/ljH2rPT8CQAvSs9fAvB6ZRs/AuD3ieifg1eO+aqmna6NAgb0Klht1T2uSVs+UQUJB/kkhXf7KThpjP5Wgl7hC3OikX1hQcomyPoHAPipWGQQJbGSQcQhSHhSSQGL8IVNLQeZfE2IV7YPdKRbaiCpEG1VfWC1m0ab7hpVTSfFvuUi7uI3w++iUCJjYVWoFgXAratyxEuWhx1SEYpoQsRtyDc8DIsCVHL1P10fOBpe8KQKaZItPTvmdkMcgV2cFsXYud8bmylfpT2TjJWJfmD6DioaPGhqoGmAbwHwLsbYTxDRfwLgXxHRFzLGKk/glSXgqok4AbkuLYBSSBqQIDq6QKh0DBATc35enMN7LIab8FtT4Qv3HCp8YbX/m2jGKQLZQ08K5xG59Pn/4nTz/CKDiNsRPXihh/5hiMHRuEjIWEkB8/IVBWTyXTbx6hVwBRHXNPysOslKTUMnmk7GpbGk0bCoqCcUsiBj13dKFgUw9osB/vsTES/7gNJWivAoTmf6/lTy3b61jeBgF8HBDrZuHsLf3wVt78HZOYC7ewDa3gPCXTAAzOPfAaUxWC5A2DAqkjbSYd6dO/9L8r/y8c1qrYY1V78meBnAk9LzV0PcVo/xZgBvBADG2J8SUQjgMQD3qza6sgQsI9aUPgQmJ+TGqCfhJBoiGA55X6zrEbw0Rrqb+8L5Cel7hP143HSz7zl5QDuviBZQxic0ai6uIoWTXZzCyyu1yaqij7BUI7jJF+4i1MnUclCjGuqsBlObQUe805DtNOuncdKKjOVxymQsVHGVX1xE5eRk3C/VBmE4TdrUyqXSBVAc++1b29i+fb1Qvf7+LpzDm3B2c/Lt74K5eWacZ+any6FaRf88jfqtsh/qsMx0864m4QB8EMBrieg14MT7zQC+VVnnBQBfCeBdRPQfAggBvFK30aURcBsfGOiWhAGhhl8EiyPuCwOFL9zb2oOXK11RPaoUvJ7yHyilyhebJYC6DJyI3XBYUsFqKxkBE194WjWskm8b1StPrnVBvHy59LiCQLto5plGcWtCr4KsirV+cThubSSrYmDs55uQsPhO5Aug1/ewfXML27evo3/zAMHBLry9fdDWHu/yrVG9bVB1F6FTv/L5pqrflbEfOgRjLCGi7wHwe+Bz+e9kjH2MiH4UwPOMsecAfD+AXySi/w58Qu47Gas/UVdaAas2RBUJyyhfnZtJOI3iCV/YyxIc9q8hTHjguqx2J0gX4MQLHl2hRW5DeGFcUsEAChU1QLlmaXlyB1B94TYkXGU51E2yVbWo56+XiVedzNLZDTriVUmximy9mkm5aaASsqqOJ/fvFwpZ2BSqRVHnFyeDBNd8F4OL8e+jzhdWvw+vzy2r7Ztb2H78Gvo3D7B167GS5eAc3ABz/Wbi9XxAqo+r1soV9oM88Va8poicLqIf1iUGGADymN73Kst+SHr8cQBf2mabK03AplCjIkxIOI1iuHGSe15DbCm+MCUx3P4BaJSfNJnZj42ScrgTiT5bigoOD7eRRDGiowEAfoLJJyzQjS/chnx1qlfn8+qIV/VyTYlXR3w6wp1WCXOrYby9JBpOWBFt1LFMxvx5ud19MhiVjpNQxeI3eQ0x+q6DR3Gq9YXl78j1XYSHIXqhh2DPx/bj17CVk6/OcphG9YpjUAeZaJvsh1VTvzwTbkOL8RDRZwCcgbNE0sEs4gRMVbApCXv9GGneuFPG5b0HJV/YzSfUgLw0nwHE+gKOHyIdRpyEk3hCBQNAeKiPURVQLYk2vnCd5dBG9VYRbxXpqq/prAZ5mSnhim6/MppqvU76vs1qWkfK4rmsloWPrFPHwJiM5Yk7oNw1ROcLF5XOQn4R3L61hZ3H9zn53r4O5/BmyXLIDImXuT4w0h8vMQEnxl2nfuvsBxWrVG50FdGFAv4KxtiDad7Y1gcWaLIidKnK48Cwaqi+sHs4BPWCsbpw9SrMlKABSN2ad3icslS/QpysOCrfFqqhaqovPEgz9IhKJGxKviaql7+mV7t1oWRtiNeUcKdZB+BEre7DlJBL+5PI1/U9hZBzhV+EvnGyi44uSlEiySDBfv5Y5wsL9ds/DBEehpx8b1/H1u3r8K7dgHf9NpyDG7zbceVANb/VpPpCL5BGarz0+qpfAEDGJj7TKmFtLQgdCauhaaJgjykJp7klEUi+MAW8vTcF4eStXv4jL5Rv7g8zncrwfBAADIfwwqBQG8HBbn7CCiJOeIxnC19YnpwTqLMcdHUbZPJVVS8PnTOP3zUl3on4Xg2ZyvGss0CdLagiZHl8dfDCoGRn1BJyGJQKRYmJun0A/VK6blZ8P2FOvtu3tjn53jyEd+0GXEG+W5pJjQ4hq18drkj229wxKwEz8MwPBuBfKpkjnaEqJtgkS66OhJPBqGRJCCIpQtVOT+Dt7SP1eKcBZ/egIGN4Pp9xbrj9o4B7wAKCZCYU38EuvJAXPBFNYIQvLJp7ur5bkHAxGSdNzglUpQ9XhZepEQ6FEgcK8q3KTpsX+WqJ11OOWdWkpwYUhKUJJ7E/2cJo6zOXrQi+PRHOJdsY4o4nODgvitqEhyGSiH+3/aMIt+MUJ1GC/dDDwefsY/vWFvZfcxNbNw+w+zmvGtsO159AunUAJh2Lqslf1RKrQxon4wk4Edus1PpVH8uYRv0uYgKOsWxzPWAAX8YYe5mIbgJ4HxH9e8bY++UViOgtAN4CANecyd1Na0OoaPKDZRJOIn6Fbyr6IqIkRLdZdnmKbGuvyDRyd2PesiW3KQAA0VlRErAobpIHvMuoUlleX6wnOnGhaOkuq46mNt91Fcy6Il8+pnKmmVCRbuhPhDW5oa8tDeiG/oSXq6sM3LZku64brs4zbhsnWpeZ5yrHARiTsiDkrdv8uAyPx4Q8PI3xWJQg2PML4hXdvQXxZlsHyDwfkM+jisnhCfJN4yIRI4ujIgNOpB5zD3hY1Potxj4Yh9WNP4++07cK6/82YyYCZoy9nP+/T0S/DV6w4v3KOs8CeBYAnvbCqb8RExXchoQ5zCwJHrkQww2H8MCLnVDMFZW7ewAIRQyA5VWl5OImMigI4ULvPyZKcoAgYbWimEjYUFGXtiyrXwC15CtPssnRDHVKQn7NC/0SAYljKAjZ9b1iGX+vnA4cFO+R4YY+MGVzRR3BTlMjVh5bk1rWkbI6Fn9vq1iWxgmGx+eNxMsUb5cMo3NEkfUiBfnytFT3oUr9ApjoemECS75mmJqAiWgbgMMYO8sffw2AH+1sZBp0RcJA8+ScSoYFiUQxL3iSxFxFxFFhTQjiFcvrbpFdhaSAqloIugnFSegUse5YqfV6TclX/De5nWtaR0fI8mul8WpIelrMkhElq3fTiTs3CCasFG9v/DhAWaWnw+Ek8fqcpIvMtnzCNyM3TwrywLyaGHTwWhAq+SanJ0iiYUG+pU4XEuE2tRxayYk3CSxjtVFGy8YsCvgWgN8mHmfqAfjXjLF/N82G2tgQ8yRhvi73hXXkKx4n0ZBPngUBkMTIALA83reJeIHc39RMAlVB3BIKKwKYrMJV3WjSKalfNdrBlHx1F4zK8WrIMo2GJStDvsBVkS7/7POb7KnbbxMaFXAQgLa5XQWg+K+DIGnfD+Ec3EC6exOZv8UnfCXClcELrLu8jbyigmX7gYYXQDRJvrLylTtdCOh8X9OOFybqd50SMOaJqQk4r4v59zocizGaCvUAZjHCwpIQy7kyVOq+SsQhE/Hw+KywJdw8WqIN3CAo/MgmRSVKbcrdoKeBWlOgDfnK/+sUbhoNK1+fvKuQJ8DK5KyiqlKaKUyVu+l+6mwIQb7OzkERRSOj+K1I8wfM64H520j8LWT+dkG4I9E2XgoxTPJlScaw7fZAVQIvjXn1s4tTLfkKD1pYD2qxdTkpyPQ3t2rWA8tWO2JjZcLQupiMU6Mi6kgYQCtLQhCxOEldjT+su+WsQzETL5GDLivLC0coWRH5mMcREdX70JUzbEu+chKCeE1HaDL5Vt32FSnYai3eCoIcq+TFxHKqSl2MQVXLakadgEy+7u7BOGIGAPX4duW48sztgeWkO2S83yBPfuQKMc3qCS3zXDiO3oYQbeXTJvLVfFdVMb9VHS8spsPKEHBbmIamdUHCPFytV1JIsxKxHBZVNUlTeK/9cTsYYGxFiJOBT76VA/nVbhZ8O7n1MAX5AlI2WFPqak0N2WIdzeu6DhmL9O/EsTBRwqkykQhoyDfPVAN4cRwGALmtwPwtJMEeBkmGKGEYXGQYJHl94bwIVGlsjv6Ob5QxuJINIeyHku+b93erIt+qYuvrrn7XAStFwG1V8KwkDEBrSXB4SONYG6omTlChlloTsVBE4OFWVVbEZDHxSSvCBzBIk8qwNFn9qllupuRbdastq1bdCd0WaWw+STaPvnFqIk/t/vNJucKeqSBflmerMbeHrH+A1AvHpHs+wiDJ8OhyhJNhgpMoGTeKdccNY3uOg23fKUhYJuckY0i9EF4aA+DHr+T7nh+DXZw2ku/EsdCQb536bUO+C/V/GZvqt7gorBQBTwMTPxjQkzAArRqWfeHxIVLL8Y1VsZzIoRIxcFbEEVep4jZWRBrHxUXDCz2kcZqTL19Hl4ThhZr04pbkKzK/tMe2Qk01oSmsqa7vWTIZ4jsTxO9BXHTLv5HRhGWSRn6hgkUxdBEfTkEI6gXIvF6hdjN/GxcpIYpSDJIMgyTDRZ58cTJM8PAyxiAntX7PLYg38BzsBx7O4zEZ+x4VjQEmLIo83jfLfV8kMeKTcaeLKsjqt63ytZgeK0fA03jBOhLWZcm1IWGxfIwyEXMVPSbhKkxMsOVZdQBPIySg1ooYR1+IYH4HSaSqdTOohdTbkK/2swDa8oVVs+k61NUX0L1W1Vq+W+gvugCK79vNL7JCBbs4BcC/S+ZH/Ht2fcAdgeX2AO89yJA4hCTvvBJ6Dk6GvMj/YJROkK/oRaiSr5f/BXmNamQJKL7gvu/xK0ge3gW7PMXw/iu4vH+E4fE5gOqLZRP5dqV+Fw2WsZW+kKwcAXeJLki4CTp11Ap5jYgqK6KIlQ0DeP14wkJxfRcQykmyIeSC3trdtiBfXXaXuq0xEmN12razwrTvEaj7TmVLanzCjusfT57EZ0ijcSuf4GAXPsbVOVzwi6vobQIAQbgPeCJ9XCz1ECXjW2SZeGUbQrTDEg1k+x5hx3d5y/nBMZzLYyA6Q3J0H+nDu2AXp7i89wCD+8dFqBmApZPvOoefEdEbAbwd/Ot9B2PsbRXr/ZcAfhPAFzPGnq/b5sYQcJt6EW3tCHFS8lv+bOIWlW9H39JGBflhKSZU1IkQGXLApPoV2weQj6F9QoEgH9U7NSVfYZN0kRABKKmtLZU8UG9PmOxThXrXY0zEUpEdgEemZHmSjhNHPF0dOd06HgJ/u0TCo4xhX/od6fxf0RJLEHDoEbZdBmd4Cmdwwj3f84dIHtzlE26PXinayhdxvlK0Q1fkuw5g2XS/LxVE5AL4WQBfDd4R+YNE9FxehF1ebxfA9wL4gMl2V5KAu6oPIaAjYRlVJNwWoh5sJcTkm+IFM6BI3pCL0sg1BLzQRxr6paiAMknU7Fa1Hvq9UvEhXdqsjnxFPePx561SxGbjAqY/OaZ9X9V3K5OzbO+YEHFy9yEnujgpknQ8SGo4v8splLBEwqOs/DtXiVeQrtyPMMyGoOgSzvACzuURsuNX+ITb8X0M778ymWQRlbsbd0W+q2w9zAFfAuDTef4DiOjXALwJwMeV9f4FgB8D8D+abHQlCXhamE7IAZN1hHUkbKqCm2wIeQJOlxFFfmjkBxfb852JovNqKBoA7UVHneWXu1RUka8YOxtGpZRc1Z9WUUWS09QWqCN008iFpn3Kdz9APRFPquGyEuZrSSR8mFsSbg8OxiTcV+7IVeJVexJ6w1NQfAmKL0Dnj5BdnCJ5eBfZ0X3EJ2eF31tlOfBllnw1eIyIZLvgWaW64xMAXpSevwTg9fIGiOjvA3iSMfZ/EdHVI+A6NFkRVWjjB+sgE6kgX5EZJc69olxljR/sxknJB24LWfmJ1uttyFcem1DBsj9tWvJPZwPMOkky1fHQxhyPyRZoIuLxRJ24CE/4wlEMf18qgXk47mkiSDjxZG3ModoNnkNc9Q646hWWQ3p2XOn3ygkxbbPc5kW+y/B/GWOm8wYPZunoQ0QOgJ8E8J1t3rdxBFyngmexItp5weXoAf5k0n5w/LDUYKjOD9ahF3pIQg9+nGKQymp4/PnlscnhZ+NlZuRb/JdUsKhqxt9btkd00Pm+bcizqQaBirqLa10iiKySq+PEUfwOyiQMrS9cjEkh4X6wh/KkHAq7Qad6RZRDkWAxhd8rf8ZN83zniJcBPCk9f3W+TGAXwBcC+KO8Ps5tAM8R0dfXTcStLAHP4gO3IeE2VkQdeHdcvf8r2w9FQXeUK2HJoWlyMR+1/1ga+nk8cGZ8Cy+y38bbDIpJNyPlK8aWNxeVu3q4UloyD9Gqtx0As5O/C5hsT/3uBVQyriNibfr68VnpriAIwpIdIUjYwyQJC9UbUAZn8KikepO8qM6sloP6edXjtSk1fnk1tE7C0D4I4LVE9Bpw4v1mAN9a7IexEwCPiedE9EcA/ocrEwUxC+pIWIapCpYhJrBIIl45E06ciKXi4Roroi10FyAv9Ar7AaiecNORb0HCeXNRuaSkyAqsQhP5mhDlLGqs7q5H3bccHSPgTRDuGLIlIfvCotuKjOBmTrN+yP3gvJtKmYS5AhbhZVWqt66mgxqPfVXJt0swxhIi+h4Avwd+ar6TMfYxIvpRAM8zxp6bZrsbS8CzWBEy2qhgGaX0XbWVTgVkpaluy82z7Nqg7hZchJyVGmMGk5aJPK5ieYUN0QQdidWRb1e3wFXb0f0GxHh0ylh3Z1SG3hfm2+Xr+vsREoCHqAGgcFQo4W2fpy1XqV6RWDEm37N8fNVRDgBqyVc9/vOyHdY5/leAMfZeAO9Vlv1QxbpvMNnmxhLwrGhTF6ANdOnIwgtWW+gU3TOG5bKNXj/G8NSM9ExC6koThdL4ZOItbBPJhihvQ1SKmy5OWcUi/Ed5H7oJWqCaiGVCa7YkxpNz/ZtDBMMhvMvToqOKm8a8w/FWAkriIsKB5ZXM6lQvAGPLQf4M8mdUj4WKtVa+NhNueswaDzxLWNq0qGrLXiIzUZYQ5dAzeV3VC1YhQtFwZDCmvjeRgMHHaqZ+VVJmybh7sOoDN43DxI9bxuSP2OcsRFzGWA2LQv8ibTs+vcTWzRh+3j3FiSO4hzfhJiPety2vYiYiHETroMv7x1ri5eM0V73y55I/uw5dkO8mqN95YaUJeJ5oY0PMAjXqwWRd1YKog9f3MDw184lFAoYrhaBVjVUbryx1eBY+sAl6oe52vXvoyML0AixQpYqriLiehAG1rkQyeDSphvNWVu7uARhQ1HFITk+KCAfVbhD716levp/ZLYe1Vr45GOt+crdLbDwBt1HBXUFXyayA6gdLWVKZhniFDeGFXDl1DVGpTTc+Wf2KnnfFOlLCSKlQu5qp13IGukn9tq89MD0p61SxSsSqGtZ7wwCk8qbR0UVZDUcx/P3ToqWViOutKh/Jx1EmXqA71Qt0R75W/dZj4wm4DbqyIVSoalI0WCQAbDSpXitD0iqI3fVdYEaFqapfecyOlEAiet8BaqPKcSSEqNjWNbojhebmpTLaEHEzOBFz4hxNqOE0b5ApVG8d8QLQqt6m8L5NV73rBEvAHUA3WaeWbhR1YutQNRlX3q6PLsrhiNAzVf2qE2+CfOUOHuK5mIhrEwlRh2URg7ztOjLugojlOtMFEUtqGACGx+dFl2LVZhDbEDDNaFM/gw5dH+NVUL+MsZVOKFl5Au6iME+bSmkydJEQbYr1lMgtB/UCMM1z3WRcsU4QQq41wCf6BkZjGL9nHAOsKmn1wqAq9pI6DkJQPDkRV+ynJhmjDquiykzUcR0RA5yMm/zhcUx5PoGWq+GqcpECqr2RDJKVI16+zeWT7zpg5Ql4XVBZjEdRlQDvDyZAqV45qjaEOmnmhV4pFK1KualZcJWoUb/F6wAg+dTqRJxcE6JNRbQ6LPuWuE4dN0VONKGUWRclxfep+royTD1edYw6LPvYLgIZVvtzXhkCXsZknIymCAgZ6u2+gBv6QIcTcVqFXqN+S5Am4uowzUTcrKhSX13cSfHttCNioYh1EJN2VVEidXG88j5ULGqSTb9tq35NcWUIuCtMWyuYv7k+I46CsDIaYqrdGSjfJl+ab6g8bpIm4gRMY4HnjbqTX35t1vhyvo32RAzo44jVwk8ydOS9isTLt79a5JsxtnJjkmEJWMEskRAmHTFEBISMwheuSbzQYZZMvbpU6TpSdvwQ6XCSfNOGNOlFxQKbogsynpaIgbIqrvKKuyReebzzwioT3arCEnDHqGrhXl7JB3Lvl7l+pQ889fan2IZqPThqBpy4SGjIt6s2RbNiWgIQ71sUEQN6e6KoNdGyStyyfV5LvNPDEvAM0KX3AuYkzABQUl9DF4BxMR8ZVdEddWPTZb/V7VtXEwJAbT2IeXnCXZDArKq4iYgBc594FtKVxzJvrDr5ZsxOwq0MFjkR14VSraqONi2MmoZq7AdRu6K0TKoJUYWuIiGaMA8SmIWMq4gYaE51roJpLKtVvOuFK0XAiwYFoV5VGr5XjoTgEQuTfcdmQZXXWxexUcQBV1wUTDpjdIlFkMG0FkUdEQP1yrhN8oBVu9VY9TC07loPzxHr+MXLMMmCA8BjbdX4Ww1MlOzEpmvilHWY6Nzs+lolXNpUheo3iRyZpjDSon8XgzQr/tq9j038qYhHaemvzTbnjWk+8yaCiN5IRH9FRJ8mordqXg+I6Nfz1z9ARE83bdMq4AWCegEyb5IImetX1oVoQi/0MI1BIccAV6p0Q+9ZZMO1SUdelD0xL6iENK06Lm+DKl9bNCzhlkFELoCfBfDV4B2RP0hEzzHG5Lb0bwZwxBj7O0T0zeDt6b+pbruWgJcM5vXMJuLmjCoSblK9y8KqEUSXYW3Lwqod0y7AWGef60sAfJox9tcAQES/BuBNAGQCfhOAH8kf/yaAnyEiYoxVfrFrYUFsGpibq2BNTPAqQhe7LKDLpgOqI0SuAtblll22VNZhvEvGEwBelJ6/lC/TrsMYSwCcALhet1GrgJcE5vZAaTvl64VBJzWB1UptAkY+dWlDZunIVxVdZd51iatGtAwMo2oBKuMxIpI7GD/LGHt2TsMqYAn4CmAealSXjtyEVcuGWySWQcZXjWxnxAPG2DM1r78M4Enp+avzZbp1XiIiD8A+gId1O7UEvIGY5QRvLBrk+dp05MrV13yybR6YBxlbstWjw0SMDwJ4LRG9BpxovxnAtyrrPAfgOwD8KYB/DOD/rvN/AUvAFhpUWRHM9YEpIjUsqmGJcz3AGEuI6HsA/B4AF8A7GWMfI6IfBfA8Y+w5AL8E4F8R0acBPAIn6VrMRMBE9EYAb88H9A7G2Ntm2Z7F6mJVojUsLJYFxth7AbxXWfZD0uMIwH/VZptTE7BhXJzFnOD1e6WC7N3vYPoIjWm7YlhYCHRlzfBMuNW9y5jlUxZxcYyxGICIi7tSmKUkpCmmTWfWodSOqKk+8RQxwG2z9ObRBNVivbEqESOLwCzsoYuLe726EhG9BcBb8qfD7zr6q4/OsM9Vx2MAHix7ELiY25ZX4/PNB5v82YD1/HyfM+sGXkH8ez/H/vYxg1WXcmzmLt/yWLpnAYCInm8I9Vhr2M+3vtjkzwZs/uerAmPsjcseQx1m0fomcXEWFhYWFhWYhYCLuDgi8sFDLp7rZlgWFhYWm4+pLYiquLiGt809tW/JsJ9vfbHJnw3Y/M+3lqCGRA0LCwsLiznh6sR7WFhYWKwYLAFbWFhYLAkLIeCmVh7rDiL6DBF9hIg+rJS0W0sQ0TuJ6D4RfVRado2I3kdEn8r/Hy5zjLOg4vP9CBG9nH+HHyair1vmGGcBET1JRH9IRB8noo8R0ffmyzfmO9wUzJ2ApZTlrwXwBQC+hYi+YN77XQK+gjH2ug2JtXwXADV+8q0A/oAx9loAf5A/X1e8C5OfDwB+Kv8OX5fn/a8rEgDfzxj7AgD/AMB35+fcJn2HG4FFKGCbsrxmYIy9H7yak4w3AXh3/vjdAL5hkWPqEhWfb2PAGLvDGPtQ/vgMwCfAM1c35jvcFCyCgE1aeaw7GIDfJ6I/z1OvNxG3GGN38sd3Adxa5mDmhO8hor/MLYqNuD3PO/N+EYAP4Gp8h2sFOwnXDb6MMfb3wW2W7yai/3TZA5on8iLTmxa/+PMAPg/A6wDcAfATSx1NByCiHQC/BeD7GGOn8msb+h2uHRZBwBufsswYezn/fx/Ab4PbLpuGe0T0OADk/+8veTydgjF2jzGWMsYyAL+INf8OiagHTr6/whh7T754o7/DdcQiCHijU5aJaJuIdsVjAF8DYBMrvol2K8j//84Sx9I5BDHl+EdY4++QiAi8O8MnGGM/Kb200d/hOmIhmXB5SM9PY5yy/L/MfacLAhF9LrjqBXhq979e989HRL8K4A3gJQzvAfhhAP8GwG8AeArA3wL4RsbYWk5kVXy+N4DbDwzAZwD8U8kvXSsQ0ZcB+GMAHwGvSQ4APwjuA2/Ed7gpsKnIFhYWFkuCnYSzsLCwWBIsAVtYWFgsCZaALSwsLJYES8AWFhYWS4IlYAsLC4slwRKwhYWFxZJgCdjCwsJiSfj/AZVnDd/nKB7iAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "r = np.zeros((nz, ny, nx)) + 0.0001\n", - "r[:10, 0, 8] = 0.999\n", - "r[7, 0, 5:20] = 0.999\n", - "r[5:, 0, 18] = 0.999\n", - "\n", - "r = r.flatten() # flatten the structure before pass in\n", - "f = c.forward(r)\n", - "ag = c.calculate_grad()\n", - "\n", - "print(\"foward value\", f)\n", - "\n", - "plt.figure()\n", - "plt.pcolormesh(r.reshape((nz, nx)))\n", - "plt.show()\n", - "\n", - "fullT = np.pad(c.T, (0, c.nx * c.ny), \"constant\", constant_values=1).reshape(\n", - " (nz, ny, nx)\n", - ")\n", - "plt.figure()\n", - "plt.contourf(fullT[:, 0, :], 100, cmap=\"RdBu\")\n", - "plt.colorbar()\n", - "plt.show()\n", - "\n", - "plt.figure()\n", - "plt.contourf(ag.reshape((nz, nx)), 100, cmap=\"RdBu\")\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -}