diff --git a/python/adjoint/optimization_problem.py b/python/adjoint/optimization_problem.py index d72d89db0..628c48877 100644 --- a/python/adjoint/optimization_problem.py +++ b/python/adjoint/optimization_problem.py @@ -28,7 +28,7 @@ def __init__( objective_functions: List[Callable], objective_arguments: List[ObjectiveQuantity], design_regions: List[DesignRegion], - frequencies: Optional[Union[float, List[float]]] = None, + frequencies: Optional[Union[np.ndarray, List[float]]] = None, fcen: Optional[float] = None, df: Optional[float] = None, nf: Optional[int] = None, @@ -53,7 +53,7 @@ def __init__( and we have to specify arguments as [A,B,C] objective_arguments: list of ObjectiveQuantity passed as arguments of objective functions design_regions: list of DesignRegion to be optimized - frequencies: list of frequencies of interest in the problem. If not specified, then the list of frequencies + frequencies: array/list of frequencies of interest in the problem. If not specified, then the list of frequencies will be created from fcen, df, and nf: a list of size nf that goes from fcen-df/2 to fcen+df/2 fcen: center frequency df: range of frequencies, i.e. maximum frequency - minimum frequency @@ -88,10 +88,18 @@ def __init__( self.num_design_params = [ni.num_design_params for ni in self.design_regions] self.num_design_regions = len(self.design_regions) - # TODO typecheck frequency choices if frequencies is not None: - self.frequencies = frequencies - self.nf = np.array(frequencies).size + if isinstance(frequencies, (np.ndarray, List)): + self.frequencies = frequencies + if isinstance(frequencies, np.ndarray): + self.nf = frequencies.size + else: + self.nf = len(frequencies) + else: + raise TypeError( + "frequencies argument of OptimizationProblem " + "constructor must be a Numpy array or List." + ) elif nf == 1: self.nf = nf self.frequencies = [fcen]