-
Notifications
You must be signed in to change notification settings - Fork 0
/
kullback_leibler.html
614 lines (573 loc) · 44.7 KB
/
kullback_leibler.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>In chapter 3 of the Deep Learning book, Goodwin defines the Kullback-Leibler (KL) divergence between two probability distributions P and Q. And although the KL divergence is often used as measuring the "distance" between distributions, it is actually not a metric because it is asymmetric.</p>
<p>The plot on page 91 gives a nice indication of how the asymmetry affects minimizing the KL divergence. The example considers a 1-dimensional Gaussian mixture P and finding a single Gaussian that minimizes KL divergence. This simple problem shows the different notions of choosing KL p||q or KL q||p.</p>
<p>Here is how to re-create the plots within Python using numpy and matplotlib.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>First, we need to get the imports right.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [43]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">matplotlib.cm</span> <span class="kn">as</span> <span class="nn">cm</span>
<span class="o">%</span><span class="k">matplotlib</span> inline
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Next, we define the relevant low-level functions. While normally one would expect that machine learning libraries have these as built-ins, we will simply hard code them for ourselves - not worrying about numerical stability, etc.</p>
<p>Let's start with a vectorized version of the KL divergence.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [44]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="k">def</span> <span class="nf">kullback_leibler</span><span class="p">(</span><span class="n">p_x</span><span class="p">,</span> <span class="n">p_y</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> compute the kullback-leibler divergence of two discrete probability distributions declared by the arrays p_x, p_y</span>
<span class="sd"> :param p_x:</span>
<span class="sd"> :param p_y:</span>
<span class="sd"> :return:</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">p_x</span><span class="p">)</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">p_x</span><span class="p">))</span> <span class="o">-</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">p_y</span><span class="p">)))</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The well-known Gaussian density formula - quick and dirty :)</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [45]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="k">def</span> <span class="nf">gaussian_density</span><span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">xs</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> 1-dimensional gaussian distribution</span>
<span class="sd"> :param mu:</span>
<span class="sd"> :param sigma:</span>
<span class="sd"> :param xs:</span>
<span class="sd"> :return:</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">sigma</span><span class="p">)))</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span> <span class="p">((</span><span class="n">xs</span> <span class="o">-</span> <span class="n">mu</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">sigma</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Now, we also need a helper function to get simple mixtures of two Gaussians. That's our factory of the P probability function.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [46]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="k">def</span> <span class="nf">function_p</span><span class="p">(</span><span class="n">xs</span><span class="p">,</span> <span class="n">mus</span><span class="p">,</span> <span class="n">sigmas</span><span class="p">,</span> <span class="n">weight</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Mixture of two 1-dimensional gaussians</span>
<span class="sd"> :param xs:</span>
<span class="sd"> :param mus:</span>
<span class="sd"> :param sigmas:</span>
<span class="sd"> :param weight:</span>
<span class="sd"> :return:</span>
<span class="sd"> """</span>
<span class="n">gauss_A</span> <span class="o">=</span> <span class="n">gaussian_density</span><span class="p">(</span><span class="n">mus</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">sigmas</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">xs</span><span class="p">)</span>
<span class="n">gauss_B</span> <span class="o">=</span> <span class="n">gaussian_density</span><span class="p">(</span><span class="n">mus</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigmas</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">xs</span><span class="p">)</span>
<span class="n">gauss_C</span> <span class="o">=</span> <span class="n">weight</span> <span class="o">*</span> <span class="n">gauss_A</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">weight</span><span class="p">)</span> <span class="o">*</span> <span class="n">gauss_B</span>
<span class="k">return</span> <span class="n">gauss_C</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Next, we define the x-range that we want to use for our functions, plus the parameters of P, which are just two means and sigmas. Note that the first mean (0) and the second one (8) have to be sufficiently separated, otherwise the asymmetric effect is not as noticeable in the plots later on. Also we have the same variance for both Gaussians of the mixture.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [47]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">xs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
<span class="n">mus</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">8</span><span class="p">]</span>
<span class="n">sigmas</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Now it's time to tackle the minimzation problem. Actually, we have two, as mentioned before KL p||q and KL q||p. Here, we simply search through a combination of means and sigmas over a limited range and take the parameter arguments that yield minimum values for KL.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [48]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">min_p_q</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">inf</span>
<span class="n">min_mu_sigma_p_q</span> <span class="o">=</span> <span class="p">()</span>
<span class="n">min_q_p</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">inf</span>
<span class="n">min_mu_sigma_q_p</span> <span class="o">=</span> <span class="p">()</span>
<span class="c1"># brute-force search for minimum KL-divergence</span>
<span class="k">for</span> <span class="n">mu</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="nb">min</span><span class="p">(</span><span class="n">mus</span><span class="p">),</span> <span class="nb">max</span><span class="p">(</span><span class="n">mus</span><span class="p">),</span> <span class="mf">0.1</span><span class="p">):</span>
<span class="k">for</span> <span class="n">sigma</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="n">mus</span><span class="p">)</span> <span class="o">-</span> <span class="nb">min</span><span class="p">(</span><span class="n">mus</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">):</span>
<span class="n">ps</span> <span class="o">=</span> <span class="n">function_p</span><span class="p">(</span><span class="n">xs</span><span class="p">,</span> <span class="n">mus</span><span class="p">,</span> <span class="n">sigmas</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span>
<span class="n">qs</span> <span class="o">=</span> <span class="n">gaussian_density</span><span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">xs</span><span class="p">)</span>
<span class="n">value_p_q</span> <span class="o">=</span> <span class="n">kullback_leibler</span><span class="p">(</span><span class="n">ps</span><span class="p">,</span> <span class="n">qs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">value_p_q</span> <span class="o"><</span> <span class="n">min_p_q</span><span class="p">:</span>
<span class="n">min_p_q</span> <span class="o">=</span> <span class="n">value_p_q</span>
<span class="n">min_mu_sigma_p_q</span> <span class="o">=</span> <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">sigma</span><span class="p">)</span>
<span class="n">value_q_p</span> <span class="o">=</span> <span class="n">kullback_leibler</span><span class="p">(</span><span class="n">qs</span><span class="p">,</span> <span class="n">ps</span><span class="p">)</span>
<span class="k">if</span> <span class="n">value_q_p</span> <span class="o"><</span> <span class="n">min_q_p</span><span class="p">:</span>
<span class="n">min_q_p</span> <span class="o">=</span> <span class="n">value_q_p</span>
<span class="n">min_mu_sigma_q_p</span> <span class="o">=</span> <span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">sigma</span><span class="p">)</span>
<span class="k">print</span> <span class="s2">"KL p||q: "</span><span class="p">,</span> <span class="n">min_p_q</span>
<span class="k">print</span> <span class="s2">"argmin mu: </span><span class="si">%f</span><span class="s2"> , sigma: </span><span class="si">%f</span><span class="s2">"</span> <span class="o">%</span><span class="p">(</span><span class="n">min_mu_sigma_p_q</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">min_mu_sigma_p_q</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="k">print</span> <span class="s2">"KL q||p: "</span><span class="p">,</span> <span class="n">min_q_p</span>
<span class="k">print</span> <span class="s2">"argmin mu: </span><span class="si">%f</span><span class="s2"> , sigma: </span><span class="si">%f</span><span class="s2">"</span> <span class="o">%</span><span class="p">(</span><span class="n">min_mu_sigma_q_p</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">min_mu_sigma_q_p</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>KL p||q: 85.7783155498
argmin mu: 4.000000 , sigma: 8.900000
KL q||p: 69.2133250287
argmin mu: 0.000000 , sigma: 1.000000
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [49]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="c1"># plot the 3 distributions</span>
<span class="n">colors</span> <span class="o">=</span> <span class="n">cm</span><span class="o">.</span><span class="n">rainbow</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">xs</span><span class="p">,</span> <span class="n">function_p</span><span class="p">(</span><span class="n">xs</span><span class="p">,</span> <span class="n">mus</span><span class="p">,</span> <span class="n">sigmas</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s1">'p(x)'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
<span class="n">ax2</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">xs</span><span class="p">,</span> <span class="n">gaussian_density</span><span class="p">(</span><span class="n">min_mu_sigma_p_q</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">min_mu_sigma_p_q</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">xs</span><span class="p">),</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">linestyle</span><span class="o">=</span><span class="s1">'dashed'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'q*(x) p||q'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
<span class="n">ax3</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">xs</span><span class="p">,</span> <span class="n">gaussian_density</span><span class="p">(</span><span class="n">min_mu_sigma_q_p</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">min_mu_sigma_q_p</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">xs</span><span class="p">),</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">linestyle</span><span class="o">=</span><span class="s1">'dashed'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'q*(x) q||p'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">draw</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'x'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'probability density'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VNXWwOHfCoKI0hELnQvSVUARrBEVUVEsoKCg4v2w
cO392ggWxI6CqCiiFAUsINjAFrwKSJXeFAxVlA4iJCTr+2NPMKSeSWbmTFnv88xDZuaUFWBmnbPL
2qKqGGOMMUVJ8jsAY4wxscEShjHGGE8sYRhjjPHEEoYxxhhPLGEYY4zxxBKGMcYYT8KeMESko4gs
E5EVIvJAIdtdISJZItIqx2v/FZGVIrJURDqEO1ZjjDEFOyScBxeRJGAwcA6wAZglIp+o6rJc2x0B
3A7MyPFaE+BKoAlQE/haRBqqTRwxxhhfhPsOow2wUlXTVDUDGAN0zme7J4ABwL4cr3UGxqjqflX9
DVgZOJ4xxhgfhDth1ADW5ni+LvDaASLSEqipql8Use/63PsaY4yJnLA2SRVFRAR4EbjOzziMMcYU
LdwJYz1QO8fzmoHXspUHmgGpgeRxNDBRRC7xsC8AImJ9GsYYUwyqKsFsH+4mqVlAAxGpIyJlgG7A
xOw3VXWnqlZX1fqqWg/X6X2xqs4NbHeViJQRkXpAA2BmfidR1ah/9O3b1/cY8n1kZKDnnov+3/+h
6enRG2es/H1anAkfZyzEqFq86+yw3mGoaqaI3ApMwSWnYaq6VET6AbNU9dPcuwAS2HeJiIwDlgAZ
QB8t7m9pCjZkCKSnw+uvQ6lSfkdjjIliYe/DUNUvgUa5XutbwLbtcz1/Gng6fNEluD/+gCeegO+/
LzhZbN4M1apFNi5jTFSymd4Rkpyc7HcIea1bB3ffDU2aHHjpoDinT4f27SEKb+yi8u8zHxZnaMVC
nLEQY3FJrLfyiIi1VIWLKrRoAQMHwrnn+h2NMSaERAQNstPbEoYp3LBh8MknMHFi0dsaA9StW5e0
tDS/wzABderU4bfffsvzuiUME3q7d0PNmrByJRx5pN/RmBgQ+CLyOwwTUNC/R3EShvVhmMIdcQRc
dBGMHet3JMYYn1nCMEXr0wcqV/Y7CmOMz6xJKhF16gQvvACNGhW9rTFBsiap6GJNUqb41q+HadOg
fn2/IzEm6qSnp9OsWTM2bdpU5LaDBw/mwQcfjEBU0cMSRqL59FO44AIoXdrvSIyJOkOHDuWss87i
qKOOKnLb3r17M3r0aDZv3hyByKKDJYxEM3EidM5vSRJjzOuvv07Pnj09bXvooYdy4YUXMmLEiDBH
FT0sYSSSfftcGZAOttqtSVz16tVjwIABNGvWjKpVq/Lvf/+b9PR01qxZw+rVqznllFMAyMjIoGXL
lgwePBiArKwsTj/9dJ588skDxzrrrLP47LPPfPk9/ODrehgmwhYtguOPh0qVirf/F1/AsmVw112h
jcuYCHvvvff46quvKFeuHJ06deLJJ5+kbdu21K9fn6Qkdx1dunRpRo0axZlnnsm5557LRx99RFZW
Fg8//PCB4zRp0oT58+f79WtEnCWMRNK6tbvDKK7y5WHUKEsYpkQkqHE5BSvJQKzbbruNY489FoCH
H36Y2267jcaNG1O+fPmDtmvWrBmPPPIIl156KX/++SezZs1CcvwC5cuXZ8eOHcUPJMZYk1SiKUkJ
8zZt3IzvrVtDF49JOKqheZREzZo1D/xcp04dNm7cSJUqVdi5c2eeba+99lrS0tK48MILqZ9rdOGu
XbuoWLFiyYKJIZYwjHdlysCpp8LUqX5HYkyJrF279sDPaWlpHHvssbRo0YLVq1eTlZV10LZ9+vTh
4osvZvLkyUybNu2g95YuXcoJJ5wQkZijgSUME5z27eHbb/2OwpgSefXVV1m/fj1bt26lf//+dOvW
jRo1atCwYUNmzvxnYc+RI0cyd+5c3nnnHV5++WWuvfZa9uzZc+D9qVOncsEFF/jxK/jCEoYJzhln
wI8/+h2FMSVy9dVX06FDBxo0aEDDhg0PdGTfeOONB4bJrl27lrvvvpuRI0dSrlw5unfvzsknn8xd
gT68vXv38vnnn3Pdddf59ntEmpUGSRSzZ0Pz5lC2bMmOk5HhVuqrUSM0cZm4E+2lQerVq8ewYcNo
3759nvfS09Np1aoV33zzTZGT9wYPHsy6desYMGBAuEINiVCWBrFRUokgK8stgPTLLyVPGKVLW7Iw
catMmTIsWrTI07a33nprmKOJPmFvkhKRjiKyTERWiMgD+bx/k4gsEJF5IvK9iDQOvF5HRPaIyNzA
Y0i4Y41bS5ZA9eq2NrcxcNCwWBOcsN5hiEgSMBg4B9gAzBKRT1R1WY7NRqvqG4HtLwZeArJ7kX5R
1VbhjDEhTJ8Obdv6HYUxUWHVqlV+hxCzwn2H0QZYqappqpoBjAEOKmSkqrtzPD0CyDmmzS4FQmH6
dGjXzu8ojDExLtwJowawNsfzdYHXDiIifUTkF2AAcHuOt+qKyBwR+U5ETg9vqHEsHAkjI8PVpjLG
JIyoGFarqkNUtQHwAPBo4OWNQG1VbQ3cA7wnIkf4FWPMysx0M7SbNw/tca+/HsaNC+0xjTFRLdyj
pNYDtXM8rxl4rSBjgdcBVDUdSA/8PFdEfgWOA+bm3iklJeXAz8nJySQnJ5cw7DhSqhS8+27oj3vC
CTBnDngsBW2M8VdqaiqpqaklOkZY52GISClgOa7TeyMwE+iuqktzbNNAVX8J/Hwx8KiqthGRasBW
Vc0SkfrAVKCFqm7PdQ6bh+GHr7+Gxx8vWTFDE5eifR5GoomZJVpVNRO4FZgCLAbGqOpSEeknIp0C
m90qIotEZC5wJ5A9bfJMYEHg9XHATbmThfFRq1bw889ujocxcW7z5s00adKEfR767e69915ef/31
Yp8rLS2NevXqFfjcTzbT2xRf/fpujYxGjfyOxESRWL/D6NWrF8OHDz/otXvvvZfq1atz//33F7n/
77//Tps2bVi1ahWHHBJ8q39aWhpnn332geG/uZ8HK2buMEycO/tsWLu26O2MiQG33HILa9asQUTY
smULN910E3v37iU9PZ13332XHj16eDrO0UcfTZMmTZg4cWKYI448SxjxbOlS+OCD8B1/2DBXcsSY
GDFv3jxat25NxYoV6datG927d+exxx4D4KGHHqJv3758//339OnTh9tuu42yZcvy008/Ubly5QML
Lm3bto1atWodWJr1r7/+omHDhowaNerAeQpbujUtLY2kpCTefPNNatSoQY0aNXjhhRc8/w579+7l
+uuvp0qVKjRv3pznn3+eWrVqFfevJCiWMOLZ5MlQwlERxsSLjIwMLrvsMq677jq2bt1K165d+eij
jw68r6oHyoYkJSUdWKp14cKFNMrR7Fq5cmXefvttevfuzZ9//smdd95Jq1atDroD8bJ0a2pqKr/+
+iuTJ0/mmWee4VuPywakpKSwevVqVq9ezeTJk3n33XcjVu7EEkY8mzvXdU4bE0VSU6Cf5H2kpnjf
vqBtCzNjxgz279/P7bffTqlSpbjiiis4+eSTD7w/YMAA+vXrx5lnnsmrr77KK6+8wt69e9m+fXue
pVvPO+88unbtyjnnnMOXX36Zp5O7fPnybN9e+BidlJQUypYtS/PmzenVqxfvv/++p9/jgw8+4JFH
HqFixYrUqFGD22+/veidQsSq1cazuXNt/W0TdZJT3CNc2xdkw4YN1MhVablOnToHfh4y5J/6plWq
VDmQBCpXrsyuXbvyHK93794MGjSIhx9+mMqVKx/03q5du6hUqVKBsYhInmVivVbJ3bBhQ559I8Xu
MOLVnj2wahU0a+Z3JMZEhWOOOYb16w+eN7xmzZo827399tsHPT/++ONZsWLFQa9lZWVx4403ct11
1zFkyJA8I5iKWrpVVQ9aJnbNmjUH+kiKcuyxx+ZZYjZSLGHEq4ULoXFjtw53OG3aBIsXh/ccxoRA
u3btOOSQQxg0aBD79+/n448/Pmg51oK0adOG7du3s3HjxgOvPfXUUyQlJfH2229z77330rNnz4OG
rnpZuvWJJ57g77//ZvHixQwfPpxu3bp5+j26du3K008/zfbt21m3bh2DBw/2tF8oWMKIV0cd5WZi
h9vUqfDII+E/jzElVLp0aT7++GOGDx9O1apV+eCDD7jiiis87Xf99dczcuRIAObOncvAgQMZOXIk
IsIDDzxAUlLSgZX3Nm7cyNKlS7n00ksLPe5ZZ51FgwYNOO+887j//vs555xzPP0effv2pXbt2tSr
V4+OHTty7bXXetovFGzinimZZcugUye3mp8xxNbEvV69elGrVi0eL+LiavPmzZx55pnMmzePQw89
tNBt7733Xho0aMDNN9+c7/tpaWnUr1+fjIyMAyOxcr8fzMS9qVOn0rNnz3yb18CWaDXRpEED2LAB
du+GI6yYsIlP1apVY8mSJZ62ff7554vcJlYSam7WJGVK5pBDoEkT68cwMcmv5VoLO2+lSpW48847
C3zuJ2uSMiXXqxeceir07u13JCYKxFKTVCKwJikTXS68EOwLwpi4Z3cY8Sh7xmj37v7GYRKS3WFE
F6tWawo3ZYrrhDbGmBCyhBGPFi6EFi38jsIYE2esSSreZGZChQrw+++Qq2CaMZFgTVLRxZqkTMFW
rYLq1S1ZGBNCtkSrYwkj3vjVHLV6NUyYEPnzGhNivXr1yvPagAED6NWrV5GzvMEljP79+7N///5i
x5B7noZf80VyC3vCEJGOIrJMRFaIyAP5vH+TiCwQkXki8r2INM7x3n9FZKWILBWRDuGONS6ceSY8
80zkz/v77/DUU5E/rzEhYku0Fi2sCUNEkoDBwPlAM6B7zoQQMFpVj1fVlsBzwEuBfZsCVwJNgAuA
IRItaTaaVavmZl5HWpMmbknYrKzIn9sYj6JhiVaAkSNHUrduXY488kj69+9PvXr1PK+4169fP7p2
7Uq3bt2oUKECJ510EgsWLCjuX0lQwn2H0QZYqappqpoBjAE659xAVXOO/zwCyP7GuQQYo6r7VfU3
YGXgeCYaVaoEFStCjjr9xkSTaFmidcmSJfTp04fRo0ezYcMGtmzZkmedjqJMnDiRq666im3bttG9
e3cuvfRSMjMzgzpGcYQ7YdQAcn6DrAu8dhAR6SMivwADgNsL2Hd9fvuaKNK0KXgs0GYSWEoKiOR9
pKR4376gbQsRLUu0fvTRR1x88cWcdtpplC5dmieeeCLoPorWrVtz2WWXUapUKe6++2727t3LjBkz
gjpGcURFaRBVHYJrcuoGPApcH8z+KTn+8yQnJ5OcnBzC6Ixn2QmjiIVjTIJLSQnuCz/Y7QsQLUu0
btiwgVq1ah14Xq5cOapWrRrU75Jz/+zlXjds2FDoPqmpqaSmpgZ1ntzCnTDWA7VzPK8ZeK0gY4Hs
VL0eqJXjvQL3TQnBfyYTAl26QEaG31EYk6+Clmht0KDBQa/lt0TrwIEDD3ot9xKtvXr1on79+gfe
L2yJ1mOOOYZly5YdeL5nzx62bNkS1O+Sc4lWVWXdunVFLvGa+2K6X79+QZ0Twt8kNQtoICJ1RKQM
0A04aOiAiOT81+oEZC+eOxHoJiJlRKQe0AAoej3FRPbKK+7hlzPOgPbt/Tu/MYWIliVau3Tpwqef
fsq0adPIyMjgscceC3qi45w5c5gwYQKZmZm89NJLlC1blrZt2wZ1jOIIa8JQ1UzgVmAKsBjXib1U
RPqJSKfAZreKyCIRmQvcCVwX2HcJMA5YAnwO9LEp3UWYM8cm7BlTgGhZorVp06a8+uqrdO/enWOP
PZaqVatSs2bNoH6Xzp07M3bsWCpXrszo0aMZP348pUqVCuoYxWGlQeJJmzbw8svQrp3fkZgEFkul
QfxYojU/9erVY9iwYbRv377IJVr79evHr7/+yogRIzwd29bDMHmpuvW1G+ee5mKMKalQL9Eaq6w0
SLzYsAHKlYNcozWMMQWLlrnAOeOwJVrDyJqkAr75Bp54Ako4bK7EZs6E+fNtudYEFktNUonAqtWa
vJKT4eOP/Y7CLdwU6Bw0xsQXu8MwofX779C8OWze7Hckxid2hxFd7A7DRK+jjnIFCP/80+9IjDEh
VuQoKRGZA7wNvKeq28IfkolpIq5y7ZIlcNZZfkdjfFCnTp2o6Uw2B5c/KSkvw2qvAnoBs0RkNjAc
mGLtQKZATZvC4sWWMBLUb7/95ncIJkw892EE1rboBLwGZOISx8uqujV84XmKy3LX/v1QqpS7uo8G
8+fDoYfanBBjoljY+jBE5HjgBdwCRx8BXYGdgLcVP0x4jR4NN9zgdxT/OOEESxbGxCGvfRjbgWHA
g6qavQr6TyJyWjiDMx4tWwb/+pffURhj4pyXO4yuqnqOqr6XnSwC1WNR1cvDGp3xZulSu6I3xoSd
l4TxocfXjF+WLfNnHW9jTEIpsElKRBoDzYCKIpLzTqICUDbcgRmP0tPht98g1yIwxhgTaoX1YTTC
jYqqBFyc4/VdgBUKihbr1rnmqCJKLkfcRx+52O64w+9IjDEhUuSwWhFpp6rTIxRP0GxYLa60ebQM
qc320UcwYgR88onfkRhj8hHS9TBE5H5VfRa4WkS6535fVW8vRowmHKItWYDrU1m61O8ojDEhVFiT
VPanfXYkAjFxpkEDWLMG9u2LvuYyY0yxBFWtNjDb+whV3Rm+kIJjTVJRrHFj+PBDV73WGBNVwjLT
W0TeE5EKInI4sAhYIiL3BRFURxFZJiIrROSBfN6/S0QWi8jPIvKViNTK8V6miMwVkXkiMsHrOU2U
sGYpY+KKl07vn1X1RBG5BmgFPAjMUdXjizy4uyNZAZwDbABmAd1UdVmObc4CflLVvSJyM5Csqt0C
7+1U1QpFnCNx7zD+/hu2bIGaNf2OJH+rV0OVKlCxot+RGGNyCVctqdIiUhq4FJioqhmA12/oNsBK
VU0L7DcG6JxzA1Wdqqp7A09nADVyvB2FvblR5McfoUcPv6MoWL16liyMiSNeEsYbwG/A4cD3IlIH
V3jQixrA2hzP13FwQsjt38AXOZ4fKiIzRWSaiHQuaKeEZTO8jTERVGTxQVV9BXglx0tpInJ2qAMR
kR5AayDnIgp1VHVjoHbVtyKyQFVX5943JSXlwM/JyckkJyeHOrzoZDWkjDEepaamkpqaWqJjeOnD
OBS4AqhLjgSjqo8XeXCRtkCKqnYMPH/Q7arP5NruXOBl4ExV3VLAsYYDk1T141yvJ24fxjnnwAMP
QIcOfkdijIkx4erD+ATX77Af+CvHw4tZQAMRqSMiZYBuwMScG4hIS+B14JKcyUJEKgX2QUSqAacC
SzyeNzHYHYYxJoK8LNFaM/sOIViqmikitwJTcMlpmKouFZF+wCxV/RR4Ftc/8oG4hYDTVPVSoAnw
hohkBvZ9OufoqoS3bx/Urx+9I6Sy9e8PRxwBt1thAGNinZcmqaHAIFVdGJmQgpPQTVKx4I03YNYs
eOstvyMxxuQQriap04E5IrJcRBaIyEIRWVC8EE3Cscl7xsQNL01SF4Q9ChO/shNGNFbUNcYEpcg7
DFVNA2oB7QM/7/GynzEAVKvmEsUff/gdiTGmhLzUkuoLPAD8N/BSaWBUOIMycUTE3WUss/EKxsQ6
L3cKlwGXEBhKq6obgPLhDMoUISMDJk/2OwrvpkyBM8/0OwpjTAl5SRjpgWFIChCoWmv8tHIl3Hab
31F4V66c9V8YEwe8JIxxIvIGUElEegNfA2+GNyxTqGXLbMKeMSbivNSSel5EzsMVHGwEPKaqX4U9
MlOwpUut6KAxJuK8DKslkCAsSUSLZcugfXu/ozDGJJgCm6REZJeI7CzoEckgTS6xWEMqPR327i16
O2NM1CrwDkNVywOIyBPARmAkbkGja4BjIhKdyd/JJ8dek9QNN8B558F11/kdiTGmmLzUkpqvqicU
9ZpfrJZUjHjySdi9GwYM8DsSYwzhqyX1l4hcIyKlRCQpsLa31/LmxjhWU8qYmOclYVwNXAlsCjy6
Bl4zxjtLGMbEvCKbpKKdNUnFiPR0qFABduyAQw/1OxpjEl64mqSMKbkyZeCkk2DDBr8jMcYUkyWM
WDNokLtaj0U//AD16vkdhTGmmLyMkiqlqpkRiidoCdUktXUr1K3rmnWsNpMxpgTC1SS1UkSeE5Gm
xYzLhEp2DSlLFsYYH3hJGCcAK4C3RGSGiNwoIhW8nkBEOorIMhFZISIP5PP+XSKyWER+FpGvRKRW
jveuC+y3XESu9XrOuGU1pIwxPvKy4t4uVX1TVU/FLaTUF9goIu+KSIPC9hWRJGAwcD7QDOguIrlr
WswFWqvqicBHwHOBfSsDjwEnA6cAfUWkYlC/XbyxhGGM8ZGXFfdKicglIjIeGAi8ANQHJgGfF7F7
G2ClqqapagYwBuiccwNVnaqq2UWGZgA1Aj+fD0xR1R2quh2YAnT0+HvFp3hIGMuXw65dfkdhjCkG
T30YuC/551S1paq+qKqbVPVD4Msi9q0BrM3xfB3/JIT8/Bv4ooB91xexb/y79FI3NDWW3XYbfP+9
31EYY4rBS3nza1X1h5wviMhpqvqjqt4eqkBEpAfQGjgr2H1TUlIO/JycnExycnKowoouvXuH5bBz
5sDTT8O338KePS4n/ec/cNVVkBTqgdfZ63tfdFGID2zi0c6d8NJLMHo0rFoFNWtCly7w4INQrZrf
0cWW1NRUUlNTS3YQVS30Acz18loB+7YFvszx/EHggXy2OxdYDFTN8Vo34PUcz18HrspnXzXF98wz
qkcdpTpokOrGjaq7dqlOmqTaqpVqp06qO3aE+ISvvab673+H+KAmHi1YoFq/vmrPnqpz56ru3au6
eLHqf/6jevTRqt9/73eEsS3w3Vnk93jOR4HzMESkHXAqcCfwUo63KgCXqYdqtSJSClgOnIMrkT4T
6K6qS3Ns0xL4ADhfVX/N8XplYDbQCtd0NhvXOb491zm0oN/BFC4lBT78ECZPhhq5GvvS06FPH3cz
MGWKW5Y7JKZOhYcegh9/DNEBTTxasAA6dIAXX4Sr86lcN3ky9Ozp/v+eeWbk44sHoZ6HUQY4Atds
VT7HYyfQxcvB1U34uxXXYb0YGKOqS0Wkn4h0Cmz2LHA48IGIzBORCYF9twFP4BLFT0C/3MnCFN/o
0e7x7bd5kwW4Sh5Dh0L9+nD99RCynJxdhNCSvCnA5s1wySUwcGD+yQLg/PPh/feha1dYvTqy8SUy
LzO966hqWoTiCZrdYQRv2TI44wz45hs4/vjCt927F9q2hZtugltuCcHJVaFzZ/dpP/zwEBzQxBNV
173VogU880zR27/0kvuv9MMP7iLHeFecO4zCmqQGquqdIjIJyLORql5SvDBDK2ESxiOPwO23Q/Xq
JTpMVhYkJ7uOw9s9DllYvhxOOw3mzYNatYre3pjiGjUKnn8eZs2C0qWL3l4VLrjALXF///3hjy+e
hDphtFbVOSKS76glVZ1ajBhDLiESRmYmHHGEu1cv4VX5sGHwxhswfTqUKuV9v5QUWLTItRkbEw5b
t0LTpjBxIrRp432/X3+FU06BuXOhdu3wxRdvQpowYkVCJIxff3WXUGklaxn86y9o2BAmTYLWrYPb
d+9eaNYM3nzThWJMqN13n5vT+frrwe/br5/rGhszJvRxxaviJIwC52GIyELyaYrKpqpFtH6bkAnR
DO/Bg+H004NPFgBly8Ljj8Ojj8LZZ1v9QxNaGzbA22/DwoXF2//ee+Ff/3Kjq4rqlzPFV1iTVJ3C
doyWjvCEuMN47jlYv94NGymmHTvc3cX337uCt8WRmek+jM8/79qNjQmVPn1ca+tzzxX/GC+95EZt
T5gQurjiWUiH1aqr/1Tgo+ThGs+WLHHtQSUwZIj7ki9usgDX59G3LzzxRIlCcSZMcG1kJuFt2OCa
kh7IU8s6ODffDDNnursMEx6F3WH8oKqni8guXNOU5PxTVT2XOA+nhLjD+OEHqFOn2EOU0tPdQndf
fumGK5ZEZqa7Uxk9Gtq1K8GBWrZ0ve/B9G6auPTww64EyKBBJT9W//6wciUMH17yY8U76/Q2+Ro5
EkaMgK++Cs3xXnnF5bBx40pwkKuvdrOvrrsuNEGZmLRnj7sWmj4dGhS6WII3W7e6vowlS+CYY0p+
vHgWrhX3EJFWInK7iNwWKOVhYoSqa9u9667QHbNXLzdDvEQzbJs2dZ35JqGNGOHm+IQiWQBUqeKu
RV59NTTHMwfzsh7GY8C7QFWgGvCOiDwS7sBMaPzwg7uK6xjClUTKl3c3BkOHluAg2SVCTMJSdXer
obyYATch9a23XFOsCS0vdxjXACeral9V7YurQNszvGGZUHnrLVfWI9Rlynv3hnfegYyMYh7AEkbC
mzbNVR4IdfHARo3cY9Kk0B7XeEsYG4CyOZ4filvMyES5HTvgk09cVc9Qa9z4n0mAxdKggRu2Zf1P
Ceutt+D//i88c3p69y7hHbDJV2GjpAbhRkXVxq2r/VXg+XnATFW9PFJBFibuO7179IAnn4S6dYPe
9fXXXV9DiTqnCzFyJLz3HnzxRdHbGpPTzp2ujMeKFSUuj5avv/92gwpnzy7WRychhLqWVKHDV1T1
3WBOFC5xnTAyM12HwZ9/FquG1EknwVNPucFI4ZD9obQaPiZYQ4e6Yd4ffxy+c9xxB1SoEKJ5Q3HI
htXGmxUrXG/1qlVB7zp/vltTYNWq4IoMBuuWW1yy+O9/w3cOE39OOcVNAr3wwvCdY948uPxy9xmw
UjZ5hWVYrYg0FJEPRWSJiKzKfhQ/TOPZokXQvHmxdh050vVdhDNZAFxzjZvEF68524TeihWujmaH
DuE9z4knwmGHuc51ExpeOr2HA68B+4GzgRHAqHAGZQIWLSpWSZCsLBg7Frp3D0NMuZx6KuzebeUY
jHdjxsCVV8IhBZY+DQ2Rfy5oTGh4SRiHqeo3uOarNFVNAS4Kb1gGgMWLi3WH8cMPULlyictPeZKU
5D6Uo4pzCaHq6lJnZYU8LhOdVN0KeZG4mAE3ie+DD0ow/NscxEvC2CciScBKEblVRC7DrfVtwu35
56FTp6JWYyL5AAAgAElEQVS3yyWSH0hwCeP9910ffVBE3IpOJVznw8SO+fP/WfY3EurVc3MyJk+O
zPninZeEcQdQDrgdaI2btOe5AJCIdBSRZSKyQkTy1KMUkTNEZI6IZIjI5bneyxSRuSIyT0QSr2hx
rVpQsWJQu2RkuFXxunULU0z5aNoUjjzSlU4PWuPGrvCPSQjvv+/+b0ayE9qapUKnyIShqrNUdTew
E7hdVS9X1RleDh64MxkMnA80A7qLSO4C22m4BJTfP+lfqtpKVVuq6qVezpnovv7azYmrVy+y5736
avdlELQWLYq/ao6JKVlZrv8ikne/4PpLPv/cqumHgpdRUicFVt9bACwUkfki4nXNtjbAykDfRwYw
BuiccwNVXaOqi8h/dT8bDBekSDdHZevSxS1xsX9/kDuecIJrpzBxb/p0tzR9SUvsB6tqVTeM98sv
I3veeOSlSeptoI+q1lXVusB/cCOnvKgBrM3xfF3gNa8OFZGZIjJNRDoXvXli27vXleq48srIn7te
PTcf43//C3JHSxgJI/vuwo85EV26uKZaUzJeBrZlquqBrwFV/UFEgr2OLK46qrpRROoB34rIAlXN
U1Q7JSXlwM/JyckkJydHKLwwUg36k/XVV24J1aOPDlNMRcj+UJ59dhA7NWnipuSauJaV5WZ1f/ON
P+e/9FK4/35XneCww/yJwW+pqamkpqaW6BiFlQZpFfjxWuAw4H1cs9FVwF5VvbvIg4u0BVJUtWPg
+YO41fqeyWfb4cAkVc23WEBB78ftTO+GDd342KOO8rzLDTe4hHHnnWGMqxArV8JZZ8G6daGvjmti
208/wfXX+1ug+Oyz3Wejs7VVAKGf6f1C4HECcBzQF0gBmgAnejz+LKCBiNQRkTJAN2BiIdsfCF5E
KgX2QUSqAacCiTGc5o8/YPPmoKqy7d/vmqMu9XFoQMOGbrSUzaw1uY0fD5dd5m8M1ixVcgU2Salq
MA0LBR0jU0RuBabgktMwVV0qIv2AWar6qYicBIwHKgGdRCRFVVvgEtMbIpIZ2PdpVV1W0phiwvz5
rm0/iCapH35wo3D9rsyZ/aE8/XR/4zDRQ9UljGJN7gyhyy6DRx+Fffvg0EP9jSVWFdmHISIVcXcX
2cucTAUeV9UdXk6gql8CjXK91jfHz7OBWvnsNx043ss54s7PP7uEEYRouIIDlzA6dIAXX7RmKeMs
XepWfTzpJH/jOPZYV/3gm2/CW/QwnnkdJbULuDLw2In3UVKmOLLvMDxSdUNaoyFhNGniKrLPmuV3
JCZajB/vmkqjoWLsFVdYs1RJeEkY/wosz7oq8OgH1A93YAlt5cqgEsbcuVCmTGRqR3lRrLbiW25x
veUm7kTL3S+4hPHJJ1Zbqri8JIy/ReRAi7SInAb8Hb6QDNOnQ8uWnjfP/kBGwxUcuDUIxo8PsuT5
b7+5zGfiypo17p821Ot2F1etWvCvfxWzjI3xlDBuBl4Vkd9E5DdcqY+bwhpVoktKCqoDIJqu4MDd
HGVlBVnxI8Yn8O3fBzvWwPpZsGtj/tvs2gC7f4esYIs0xrAJE1z9zHCXMg/G5ZeHd6W/eFboP2Og
FlQjVT1BRCoAqOrOiERmPFmxArZtc6UPooXIPx/K470OWzjhBPjoo7DGFWpzh8GcN2DrSsjYA4dX
d48zHoEm+STwOUNh1hDYu91tV6UBHNkUWvWGY7zfUMaU8eP9mxdUkMsvh+RkGDTIBmYEq8glWkVk
tqr6PL6hYHE7cc+jZ55xt/yvveZ3JAebNg1uvjmIhZWWLHEzqlauDGtcwdq1EfbthGqN8r63aSGk
74aqDeGwqt6bBDPT3Z3GlhXw5xKo1x6q57PsiWaBxPAX2ubNrvnn99+jb3Z18+bw5pvQrp3fkfgn
LGt6i8gAYDMwFjhQ71FVtxYnyFBL9ITRti08/nj4l7sMVlYW1Kjh2oobNvSww/79rpT777+7YVY+
+mMRLB4HKz+Dbavg9IfgtPsiH8ewdlC2Ehx3MTTt4u5KYsnw4fDpp9F54/jYY65MyHPP+R2Jf8KV
MPLUbsKV94iKkVJxlTCyslwvocfZd+vXu8qfv//uRklFm1tucUUJ77/f4w5z5rhfyKdfZttqGNPZ
NRk1uwoaXQI120Kp0r6Ew94d8OsUWD4BVnwGtdpBi2ugxdWxcedxySWuEGaPHn5HktfPP7sRU7/8
Ej2DRSItLAkj2sVVwlixAs4/H1bnl6PzGjLENf34PYO2IF995WbWzvC0eor/MjNg3XSofXr0fSGn
/wXLJ8KaH+CiV/2Opmi7d7uJcmvWQKVKfkeTlyrUr+865YOcIxs3Ql1LKvugZUXkbhH5WEQ+EpE7
RaRs8cM0BZo9O6jpsNE2Oiq35GTXJbF+vd+RHGzfTtdJnVup0lDnzOhLFgBlDocW3WMjWYBbe6Jd
u+hMFvDPwIzx4/2OJLZ4+WiMwK2WNwg3pLYZMDKcQSWsIBLGtm2uAmjHjmGOqQRKl3ZDKidEyeK6
f/0J3z4CL9eH1d/6HU1ozXwVfn7X3SVFg2i/mAEbXlscXhJGc1X9t6p+F3j0xiUNE2qzZ0Nrb4sZ
fvqpK9d8+OFhjqmEouFDuXsTfHknDG4Ee7ZA75lwXCd/Ywq16s1hwUgY1NAN3c1M9y+W9HT44ovo
LyPerh38+WfUDcyLal4SxtzAuhYAiMgpwOzwhZSgMjNh3jzPCSMWruDAjd6aPdsNsfQshH1S29Ng
SFNAoM9i6PQaVI6K4RqhVfcsuPZr6DIWVnwKgxvDgtEh/av07LvvoHFjOOaYyJ87GElJrsaVNUt5
5yVhtAam5ZjpPR04WUQWiojXUfamKJs3w7nnQuXKRW66Zw98/TVcfHEE4iqhww5zSWPSJI879O/v
St2GSKU6LlF0fAnKR/kXWCjUPAWu+Rw6D4fNS/0ZARQthTC9iIY74FjiZVhtncLeV9W0kEYUpLga
JeXRJ5/AwIHuSi4WvP8+vPeex6QxapTbcOzYsMdlQi8rC2rWhKlTPc6/8VlGhlvSeP58F3ciCcso
KVVNK+xR/HBNccVKc1S2Cy90XyC7dnnY+KSTXBtWkP5cAvOs6L4n4ewY/+knqFIlNpIFRN/AjGgX
hQMITWH273cd3n4uxRqsihXdCnyff+5h4+OOcz2RW70VEti7A768C945C/bvLVmcieCvP2FQA5j3
tis9EmqxdjED1iwVDEsYMeZ//4M6daB2bb8jCY7nD2VSErRq5ekuY+nHrkM7fZfrpzj5lpLHGe8O
PxKu/NgVQnwnGTaHcNHj7KVYY+liBlwf25w5QQ7MSFCWMGJMLF7BgSsTMXky7PVyF9CmDSxaVOgm
056Hbx+GK8bAJW/FXp0lPx3bGm74EZpdCcPPgKmPh2YY7pIlbkhtq1YlP1YkZQ/MmDjR70iiX9gT
hoh0FJFlIrJCRB7I5/0zRGSOiGSIyOW53rsusN9yEbk23LH6ZuZMT2Vdo2kp1mBVrw4nnujKhRSp
f3+4++5CN2l5A9w0D+qcEZr4Ek1SKWhzK9w41/X/7N5U8mNG01KswbJmKW/CmjAC62kMBs7HTfbr
LiKNc22WBlwHjM61b2XgMeBk4BSgr4hUDGe8vnnlFU+LYM+dC2XLQtOmEYgpDDyXYvCw2s5hVeAQ
K1BTYhVrQZcx7s+SitWLGXADM77/3uPAjAQW7juMNsDKwIiqDGAMcND8T1Vdo6qLgNxjY88Hpqjq
DlXdDkwBorgQRglMmwannlrkZrF8BQfuy2TiRNdx75Wqq/1kotuaNZCW5gY3xKKgBmYksHAnjBrA
2hzP1wVeK86+64PYN3Zs2gTbt0OjfFboySVW+y+y1arlKoR6XU95z2YYexlMvie8cZm8VGHOm95H
nkXjUqzBsmaposXwP+8/UlJSDvycnJxMcnKyb7EEbfp0t75qEWtFrljhRppG01KsxZH9oWzfvvDt
fp0Cn/SC5ldD+ycjE5v5x/6/4dcv4aeX4bIRcEwRHdkTJkTfUqzBuuQSuPdeNzCjbBw2d6amppKa
mlqiY4R1PYxADaoUVe0YeP4gbvGlZ/LZdjgwSVU/DjzvBiSr6s2B568D36nq2Fz7xfZM7/vvdyvM
PfpooZs9+yysWgWvvx6huMJk+XKXLNauzT9H7t8LX/8Xln6QRZe+i6nVu0XkgzSAu8tY+B5MvgtO
/g+c+TAk5XOJuWWLu3OMxqVYg5WcDPfcExtld0oqLDO9S2gW0EBE6ohIGaAbUNjgtZzBTwbOE5GK
gQ7w8wKvxZd27TyV9Yz15qhsjRq5NRJmzsz//YXvwc61cNOcLGrdc5qr4258IQLHX+NGo62b5obg
/vVH3u0mTXJl0GI9WYA1SxUl7CvuiUhH4GVcchqmqgNEpB8wS1U/FZGTgPFAJWAv8Luqtgjsez3w
MK5D/ElVHZHP8WP7DsODtWvdkNSNG6NzKdZgPfoo7Nvn7ppyy/6nFMHditx3H1xwQUTjM3lplkvm
za7Ku2Rtp05w9dXuEevWroWWLd1nrbRPS/NGii3RGqdeegkWLoS33/Y7ktCYNw+6dnXrEBQ64uvR
R101u6eeilhsJjjbtrkl6Netcy2r8aBNG3j6aTjnHL8jCa9obJIyITBuHFx5pd9RhM6JJ7rlP2an
FrFhcjKUsJPOhNcnn7gv1nhJFmDNUoWxhBHl1qxxV+LxdLWz/2+4ugJ8dk0RC/y0a+fqTu/eHbHY
THDGj4ZzykTP0rChkD3BNCsMxRljnSWMKPfhh26yXry0p26cC0NbQ+2jYWLlIpqkypWDG2901WtN
1Nm2DX6aAeW3wfDTYesvfkcUGscd50q0//ST35FEH0sYfpkzBx55pMjNxo1z7f2xTrPgx+dgVEc4
81Ho/QVs3Aq/FPUl8+KLUK9eRGI0wZkwAU7rAD2/hBbXwLB28PO7/iwLG2qey9gkGEsYfpkyBf76
q9BN0tLcF2pRk9xiwZ9L4JcvoPdMaHG1raccD7L71kTglNvh2m9h2nPw8TXhWWsjki67zPVjxEPy
CyVLGH5JTXWduoX48EP3HzcemqOqN4drv4FKdf95LftDaWLP1q2uBNpFF/3z2lEtoPcsaNoVJMa/
WbIHZixc6Hck0SXG/1ljVHq6KwlyRuG1uceOjY/mqGy5+yuSk93M7/XrfQnHlMD48XDeeXDEEQe/
XvowaBIHE0xFbLRUfixh+GHaNDfluUqVAjdZvtxNIorF5qjtHld6L1PG1e8ZNy688ZjQGzkSrrnG
7yjCq0sXGDPGmqVysoThh8mToWPhldpHjYLu3WOr+mfWfrd621unuLWjvejZ0335FGr7dujXr8Tx
mdBIS3MLIl54ofd91vwI80fG1pdv27auFL+H1YIThs309sOuXa5ZqmrVfN/OyoJ//cvdDrdsGeHY
imnbahjfA0qXg87vQAWPhegzM91M4c8/hxYF1RnMzHRL9i1cCMceG6KITXH17+/ufl97zfs+mxbA
h93g6BPhotegbIwshfb4425U96BBfkcSejbTO1aUL19gsgD48Uc4/HDX8RbtVN2V41ttoMkV0GOy
92QBUKoU9OhRxF1GqVKuwfzLL0scrykZVfdv1bNncPsddTzcOBvKVoI3TnR3HLGgRw/XLJUegjXP
44EljCiU/YGMhZX1MvbAoveg51fQ7u7ijY7p2dM1wWVmFrJRx46WMKLAnDmQkeEm4QerdDm4aAh0
fBnGXQHTXwx9fKFWvz40aWL/9bJZk1SU2bsXatRwFTFq1vQ7msg5+WRXY7BDhwI22LgRmjWDP/6I
rY6dOHPHHVC5MuRYs6xYdm2Ebaug9mkhCSus3nrLJYwPP/Q7ktCyJqk4MGmSa4pKpGQBcO21MCJP
8focjjkG6tSxeg0+Sk93zTM9epT8WOWPiY1kAW5o+9dfu7knic4SRiT98UeRhfTefBP+7/8iFE+Q
/lgE+/eF59jdusGnn8KOHYVs9Pbb7i7D+GLiRGjaFBo08DuSyKpY0bWIjhnjdyT+s4QRSf37u8Ut
CrBqlVsrItpW1suuA/Xu2fBHmGa+Hnmk69cePbqQjVq2dMv1GV8MHepqQYbT7Ddg9XfhPUdx/N//
ud8/jlq/i8USRqSoFrnO6ltvuaaZaFqAftsqeLc9rJjkyj4ce1L4znXzzW7N8kT/UEajSF3MVKwN
43vC57dBeuGl1iKqfXtX+i3RW0QtYUTKvHluanMBTSoZGTB8OPTuHeG4CqAKMwfDm23guIvhuu8O
rgMVDmef7Tr9p08P73lM8N56y41mC/fFTMML4JaFsG8HvH4CrPkhvOfzKikJbrrJXdAkMksYkTJh
givPWsBY2UmTXB3+xo0jHFchdv8ON/wIp94DSaXCf76kJNfk8cYb4T+X8S7SFzOHVYbLRkCHF+CD
K2HOm5E5b1Guv96tMLhtm9+R+CfsCUNEOorIMhFZISIP5PN+GREZIyIrRWS6iNQOvF5HRPaIyNzA
Y0i4Yw0bVTcm7/LLC9xkyJDwtw8HQwTaPwnVGkX2vNkfykJHpOzbZ6vwRdD48dCwoZuPEEmNO7u7
jeMuKnrbSKhWzZVDKXQ0X5wLa8IQkSRgMHA+0AzoLiK5r6H/DWxV1YbAQODZHO/9oqqtAo8+4Yw1
rPbscY2gbdvm+/bChbB0aXxVpi2uatXg4otdE0iB7r8fBg6MWEyJbuBAuPNOf85driqUj6JqMLfc
Aq++mrjLt4b7DqMNsFJV01Q1AxgDdM61TWfg3cDPHwI5V6+OgbnOHhx+OAweXGBz1MCB0KeP6+KI
tMx0+P6p6Fpe86674JVXCinH0L27mw5vveNh99NPbs5k59yfWp9l/O3PeU87zQ3UmzTJn/P7LdwJ
owawNsfzdYHX8t1GVTOB7SKSXfe7rojMEZHvROT0MMfqiz/+cEUGb7op8udO+x+8fiKsnwGHRNHI
rFatXPX3sWML2OCUUwK98jMjGlciGjgQbr/dlfOKJl/eAR90dTPGI0kE7rkHnn8+sueNFtFYYyH7
MnwjUFtVt4lIK2CCiDRV1TyN1yk56hQkJyeTXMRKdtHktddcU1S1apE7599b4av74Zcv4YJXoPFl
0Ve36p574KGH3KziPLGJuCE7I0a45GHCYt06V4k/GkcGXfCKuzN+/Xg4+wlofWPkVvm74gp44AF3
9xVL//1SU1NJTU0t0THCWktKRNoCKaraMfD8QUBV9Zkc23wR2OYnESkFbFTV6vkc6zvgHlWdm+v1
mK0ltXu3K242dWrkOhQz02FwYziuk+vUPrRCZM4brKwsV+785Zfh3HPz2WD1amjTxi3X50dbXgK4
8043cu3FKC4S+Mci+PQmyMyACwdDjTaROe/AgW4dtFhe/Ks4taTCnTBKActx/RIbgZlAd1VdmmOb
PkBzVe0jIt2AS1W1m4hUw3WGZ4lIfWAq0EJVt+c6R8wmjOeec4uzFNj0EiZ//QmHHxnZcxbH8OFu
5vfXXxewwYMPuvYSWyMj5H7/3ZUBWbzYlfGKZpoFC0bB3h1wym2ROeeuXe5i78cf3XD4WBR1CQPc
sFrgZVx/yTBVHSAi/YBZqvqpiBwKjARaAluAbqr6m4hcDjwOpANZwGOq+nk+x4/ehPHii+7q99Zb
87y1Z49bJGnKlEIWDkpwGRmuL+Odd+DMM/2OJrHcd58bvfzKK35HEr2efBKWLXOl+WNRVCaMcIva
hJGV5Qavv/devg2dAwfC99+Hb5H5/Xth2QRodlX09U8E45134N134bsorC8Ur/780yXqBQtiv2py
9ldDOD4DO3e6QoyRbFIOJStvHk0++8yNv2uTt1F11y549ll49NHQnzYrE35+FwY3gkXvuwWOYlmP
Hq7z1RJG5AwY4KoHx3qyAPh1siuauS4MNaAqVHCDMxJpuXm7wwiXM86A//zHffJyeewx12db6LKk
QVKFlZ/BN/91HdnnPgO142Qg8qhRbrLUtGmxfbcUC1atcotZLV4MRx/tdzQll7XfXUCl9oVa7aB9
f6jaMHTH373bNSR8/rkrphxLrEkqWkyb5i6NV6zIszrc+vVw/PGuFmHt2qE75fwR8OMzcM7Trlhg
PH2xZmW5G7W77oJrrilgo3374NBDIxpXPLrqKten9sgjfkcSWhl74KdXYPoL0KQLnDsAylYMzbGH
DnUXNVOnxtbnzhJGtBg+3F3y33BDnrduuAGOOgqefjq0p8xMBykVmSKBfpg2zX2ZLVvmJs4fZOdO
VwV4/nyoUiXf/U3Rpk93c4JWrIBy5fyOJjz2bIFZQ+D0B6BUiEZjZ2ZC69bw8MOxVd7HEkaUmzYN
unRxdaMqFvPqJpydeNHummvcUMYnnsjnzRtugFq1EqtBOYT273dNUXff7eZEmuBMnerWslm6NHaS
rSWMKJae7kpePPYYXHll8PtnZbpFjKY9B6feB40vDX2M0W7dOtdOnJqaz7Iiq1a5dqtFi+Kj8T3C
XngBvvgCvvoqMS9GAFZ9DeWqwdEnFm//bt1cM/Ozzxa9bTSwhBHFnnrK3fJPmhTcBzJ9N/z8DswY
6Cp3tr0bmnaJ36anogwd6irZTpuWp3sI7r3XNU8NHepLbLFq9Wp3dzFjRuKt153TvOHw3aOupH+7
e6BBx+DKjfzxh+ufnDChwMLUUcUSRpSaMwcuuABmzYI6dbzvt2mBWx617lnuP3DNdol79ZdNFTp0
cOVCHsi9usr27W4CwZQpcMIJvsQXa/bvdysdXnKJm6yX6DLTYdFY1zmemQ5t74SW//Z+gTZuHPTt
6wa1RNNSy/mxhOGnX37J9/Js927XFPX44/mOsC1UZgbsXAuV64coxjiRluauiD/7zP15kM8+c+1V
dev6EVrMefxxN4F0yhRXN8o4qvDbd27ya8eXvV+oqbrBGUce6YaCRzNLGH5ZtAiSk2H5cqha9cDL
qm4FuaQkN3CqINvTXHNTmSPCHmnc+PhjN2lq9uyD/spNEKZOdV9uc+daOa5Q2r4dTjrJDc7o3t3v
aApmM7398Pff7tbhuefyfHO98IIrrzB4cD67bYM5Q2H4mTC0NWycm3cbU7DLL3dlpq+5xjWrmOCs
WuWSxahRliyK439Pw0dXw8rPXUtATpUqwUcfubqYCxb4E1+42B1GSd18M+zY4WpG5bhvnTjRLec4
Y4Yb7Zlt/Sz4oT+s/hb+dT4c38N1roVqTHgiychwbe81a7p+7kTv3/Fq+3a3clyfPq4YgQneX3/C
4nGwcLRbrbLZVdC8m5tNnt1RPnasG4fx44+hnaQbKtYkFWmvvupuH2bMOGhixddfw9VXw6ef5i0l
tWEObJoPTa4I3UzTRLZ7t2sN7NjRNQHkSRr797sXo23JOJ/s2gXnnQft2sFLL/kdTXzY+qtLHIvH
wVXjDy498uKLMGyYGwp+ZJQtKWAJI5L27XOfvHfecbPJAr75Bv7TBZ64FbrmN8HMhNymTXDOOXDx
xdC/f66k8eSTbgLHa68l/C3Izp3QqZMbEzBkSML/dUTMIw/DFx/Ap1Oja20RSxiRpgoi7N4Eq76C
r9+A36dB1aOhxeVuGUn7UEbG5s1w/vlu1NQrr+RYhG/nTjdu9Kyz3ELMCToUaN06uOgiOP10GDQo
Yf8afLE9DV5uAtsy4ZSroU13qH0GlD7M37gsYfhAFYY0g02ZMONPeHw0tL3At3AS2o4drubjjh3w
wQeuZhcAW7e6S+sGDVz7QOnSvsYZaf/7n2sive02N9fCLmIiLysT3ugLk16C9nUh/Tc4sZdbVtYv
NkoqDP76A375Ev7XH7atyvv+r7/C+5VhZj0YtcyShZ8qVoRPPnF9Gi1bwvjxgTeqVHEdS9u3uzc3
bfIxysjZtw9SUlxBvKFD4f77LVn4JakU3PIkPPYNvLwTNvSAE27Jf9stK2Dt9Ohcy8YSRj4WjIIx
neHFmjDoOFj66FyO+ezxg7bZs8d9GNu2hSu6uHr41av7E6/5R1KSm4w2bpybCd61q0vqlCvnajZc
f33xKz/GkG++cZPd5879p9KA8V/btm6o7V/pcHon+PDDfwqKZvt9PnxxKzxbDV5rAROucxeuUUFV
w/oAOgLLgBXAA/m8XwYYA6wEpgO1c7z338DrS4EOBRxfQ23F56qLxqluT12lWddeq1q9uuqIEaqq
unOn6nPPqR59tOqVV6quXRvy05sQ+esv1ccfV61aVfWWW1SXL/c7ovDKylL95hvVs85SrV9f9ZNP
/I7IFOarr1RbtlRt00Z1/HjV/fsPfn//PtUNc1RnD1VN3xP68we+O4P7Pg92h6AO7u5gfgHqAKWB
n4HGuba5BRgS+PkqYEzg56bAPOAQoG7gOJLPOUL/N5maqnrFFapVqqj27asZW3ZoaqrqDTeoVqrk
EsX8+cEd8rvvvgt9nGEQj3H+8YfqQw+5vN+xo+qoUarbt+faaO5c1W3bQhqjamT+Pn/7TfXZZ1Ub
NVJt0kT13XdVMzKCO0Y8/rv7JZgYMzNVx45VbddOtU4dd4GzZEnYQjtIcRJGuJuk2gArVTVNVTNw
dxKdc23TGXg38POHQPvAz5fgksd+Vf0Nd6eRd4HsMMic8zNrGp3LsEdWc/WKFI5qWIE773R17ZYu
dRNyjj8+uGOmpqaGJdZQi8c4jzzSVQtOS3Mzw8eOdZMpO3Rwo26//x7Sh410lSEvushNUJg/380M
jGCcXqjC2rWuNMp990Hz5m5k2PLl8PbbbmnVa6/Np5JvhOMMl1iIM5gYk5LccgfTprnmqS1b3Gj9
Jk3g1lvd/9V16/I2W/klyP9WQasBrM3xfB15v/QPbKOqmSKyQ0SqBF6fnmO79YHXwmrtWmjy2B3U
qeMm3Z19tqv6USPsZzbhVrasG0XVo4cbbfvdd24E0b33wqJFL9Kg6qNcteEbznr7a5o8/QYVd6xh
xvu/UaFBdSpWdF0f5csH5gCmpbknFSuGbFLg/v1uIuLmze6xZYv7My3NlfJYtcolBnBJok0bN+jr
5HOgOt0AAAZESURBVJNtmGw8OOkk93jxRdfvNHWqKyBx662uL27IEL8jDH/CKA5fx3HUqOHW3U6A
ftGEVqECdO7sHuCW2Vy9ujKLF3dh1qouTFgPm9P+YtVL5di6zSWYHTvcF3q5cjBvTweq6R+U1538
LeVITypLRtKhXNb8F9KTXF1rVdiwwY3cev2XczhEM1CELJLIzBIys4Qrj/iCXfvK8PffbvsjjnAl
yYZvu5QjS+/n2DJwymHunOXKwd4Z46lRt3Te0U6XXpp/Ua3x4/MfRpx7+xUrXCVHr9sHe/xY2/6y
y/Lf/uOPi95++XL3je91+1zHTypdmpNPdhcC997r/l/s3bgNqJx3+wgL6zwMEWkLpKhqx8DzB3Ht
Zs/k2OaLwDY/iUgpYKOqVs+9rYh8CfRV1Z9ynSNKbtaMMSa2aJDzMMJ9hzELaCAidYCNQDcgd8Hf
ScB1wE9AV+DbwOsTgdEi8hKuKaoBMDP3CYL9hY0xxhRPWBNGoE/iVmAKbsTUMFVdKiL9gFmq+ikw
DBgpIiuBLbikgqouEZFxwBIgA+ij4bwdMsYYU6iYLw1ijDEmMuJqbIWI3CMiWYFRVlFHRJ4VkaUi
8rOIfCQiFfyOKScR6Sgiy0RkhYjkXjE7KohITRH5VkQWi8hCEbnd75gKIiJJIjJXRCb6HUtBRKSi
iHwQ+H+5WERO8Tum/IjIXSKySEQWiMhoEYmKFWREZJiIbBKRBTleqywiU0RkuYhMFhHfh9AUEGfQ
30dxkzBEpCZwHpDmdyyFmAI0U9UTcfNK/utzPAeISBIwGDgfaAZ0F5HG/kaVr/3A3araDGgH/CdK
4wS4A9ekGs1eBj5X1SbACbiqClFFRI4FbgNaqerxuKb0bv5GdcBw3GcmpweBr1W1Ea5PNho+5/nF
GfT3UdwkDOAl4D6/gyiMqn6tqlmBpzOAmn7Gk4uXSZa+U9XfVfXnwM+7cV9wUTdLJnABcyHwlt+x
FCRwRXmGqg4HCEyS3elzWAUpBRwuIocA5YANPscDgKr+AGzL9XLOycjvApdGNKh85Bdncb6P4iJh
iMglwFpVXeh3LEG4AfjC7yByyG+SZdR9EeckInWBE3Ej7KJN9gVMNHcS1gM2i8jwQNPZUBHxeZWG
vFR1A/ACsAY3gXe7qn7tb1SFqq6qm8Bd4ACxUJbU0/dRzCQMEfkq0H6Z/VgY+PMS4CGgb87NfQqz
sDgvzrHNw0CGqr7nV5yxTkSOwJWSuSNwpxE1ROQiYFPgTkjweTJqIQ4BWgGvqmorYA+uOSWqiEgl
3FV7HeBY4AgRudrfqIISzRcNQX0fReNM73yp6nn5vS4izXHFCeeLiOBuq+aISBtVjXhR4ILizCYi
1+OaKtoXtp0P1gM5l6qvGXgt6gSaJT4ERqrqJ37Hk4/TgEtE5ELgMKC8iIxQ1Wt9jiu3dbg789mB
5x8C0TjY4VxglapuBRCRj4FTgWi94NokIkep6iYRORqIluLkeQT7fRQzdxgFUdVFqnq0qtZX1Xq4
D0FLP5JFUUSkI66Z4hJV3ed3PLkcmGQZGIHSDTd5Mhq9DSxR1Zf9DiQ/qvqQqtZW1fq4v8dvozBZ
EGg2WSsixwVeOofo7KRfA7QVkbKBi8JziK7O+dx3kROB6wM/XwdEy0XNQXEW5/soZu4wgqBEbxPA
INz6H1+5//fMUNU+/obkFDTJ0uew8hCR04BrgIUiMg/37/2Qqn7pb2Qx63ZcRYXSwCqgl8/x5KGq
M0XkQ9xyBxmBP4f6G5UjIu8ByUBVEVmDaxofAHwgIjfgRm1e6V+ETgFxPkSQ30c2cc8YY4wnMd8k
ZYwxJjIsYRhjjPHEEoYxxhhPLGEYY4zxxBKGMcYYTyxhGGOM8cQShjHGGE8sYRhjjPHEEoYxISYi
J4nIfBEpIyKHBxb+aep3XMaUlM30NiYMRORxXOHBw3AF/p7xOSRjSswShjFhEKjNNAv4GzhV7YNm
4oA1SRkTHtWAI4DyQFmfYzEmJOwOw5gwEJFPgPdxq9odq6q3+RySMSUWj+XNjfGViPQE0lV1jIgk
AT+KSLKqpvocmjElYncYxhhjPLE+DGOMMZ5YwjDGGOOJJQxjjDGeWMIwxhjjiSUMY4wxnljCMMYY
44klDGOMMZ5YwjDGGOPJ/wOMO9DwgYcWWgAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>And voila - we have the figure.</p>
<p>The distribution for Q in KL p||q is chosen w.r.t to the first mode of the mixture P, as it tries to have low probability where P has low probability and thereore aligns to one of the modes of P.</p>
<p>For Q in KL q||p, it tries to have high probability where P has high probability and therefore blurs between the two modes - exactly in the middle, stretching variance as wide as possible.</p>
<p>You can play with the parameters and see the effects on the chosen Q.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [ ]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span>
</pre></div>
</div>
</div>
</div>
</div>