-
Notifications
You must be signed in to change notification settings - Fork 0
/
yul_cmd.lean
774 lines (725 loc) · 29.8 KB
/
yul_cmd.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import .yul_ast
import .aux
import tactic.linarith
import data.finset.basic
import data.vector
import init.data.fin.ops
import init.data.list.basic
set_option class.instance_max_depth 100
def FTContext := Identifier → option (ℕ × ℕ)
def empΓ : FTContext := λ_, none
def VarStore (vars : finset Identifier) := ∀ i : Identifier, (i ∈ vars) → Literal
def empStore : VarStore ∅
| i i_in_emp := absurd i_in_emp (finset.not_mem_empty i)
namespace YulCommands
variable Γ : FTContext
inductive IsInFor : Type
| NestedInFor : IsInFor
| NotNestedInFor : IsInFor
inductive IsInFunc : Type
| InFunc : IsInFunc
| NotInFunc : IsInFunc
inductive TermType : Type
| BlockList : finset Identifier → finset Identifier → IsInFor → IsInFunc → TermType
| CBlock : finset Identifier → IsInFor → IsInFunc → TermType
| SwitchBody : finset Identifier → IsInFor → IsInFunc → TermType
| CExpr : finset Identifier → ℕ → TermType
| CStatement : finset Identifier → finset Identifier → IsInFor → IsInFunc → TermType
open IsInFor
open IsInFunc
open TermType
inductive YulTerm : TermType → Type
| EmpCBlock :
∀{vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (BlockList vars vars b b')
| SeqCBlock :
∀ {vars : finset Identifier} (vars' : finset Identifier)
{vars'' : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (CStatement vars vars' b b') ->
YulTerm (BlockList vars' vars'' b b') →
YulTerm (BlockList vars vars'' b b')
| NestedScope :
∀ {vars : finset Identifier} (inner_vars inner_vars' : finset Identifier)
{b : IsInFor} {b' : IsInFunc},
VarStore inner_vars →
YulTerm (BlockList (inner_vars ∪ vars) (inner_vars' ∪ vars) b b') →
YulTerm (CBlock vars b b')
| CCase :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
Literal → YulTerm (CBlock vars b b') → YulTerm (SwitchBody vars b b') →
YulTerm (SwitchBody vars b b')
| CDefault :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (CBlock vars b b') → YulTerm (SwitchBody vars b b')
| CNone :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (SwitchBody vars b b')
| CFunctionCall :
∀ {vars : finset Identifier}
(f_id : Identifier) (n : ℕ) {m : ℕ},
(Γ f_id = some (n,m)) →
(fin n → YulTerm (CExpr vars 1)) →
YulTerm (CExpr vars m)
| CId :
∀ {vars : finset Identifier} (id : Identifier),
id ∈ vars → YulTerm (CExpr vars 1)
| CLit :
∀ {vars : finset Identifier},
Literal → YulTerm (CExpr vars 1)
| Scope : ∀ {vars_outer : finset Identifier} (vars_inner vars_fin : finset Identifier)
{n : ℕ} (ret_vars : vector Identifier n),
VarStore (vars_inner ∪ (tofinset' ret_vars)) →
YulTerm (BlockList (vars_inner ∪ (tofinset' ret_vars)) (vars_fin ∪ (tofinset' ret_vars)) NotNestedInFor InFunc) →
YulTerm (CExpr vars_outer n)
| Result :
∀ {vars : finset Identifier} {n : ℕ},
vector Literal n → YulTerm (CExpr vars n)
| CBlock :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (CBlock vars b b') → YulTerm (CStatement vars vars b b')
-- Function definitions already parsed into FTContext.
| CVariableDeclarationAss :
∀ {vars : finset Identifier} (n : ℕ)
(new_vars : fin n -> Identifier) {b : IsInFor} {b' : IsInFunc},
YulTerm (CExpr vars n) →
YulTerm (CStatement vars (vars ∪ (tofinset new_vars)) b b')
| CVariableDeclaration :
∀ {vars : finset Identifier} (n : ℕ)
(new_vars : fin n -> Identifier) {b : IsInFor} {b' : IsInFunc},
YulTerm (CStatement vars (vars ∪ (tofinset new_vars)) b b')
| CAssignment :
∀ {vars : finset Identifier} (n : ℕ)
(ids : fin n -> Identifier) {b : IsInFor} {b' : IsInFunc},
tofinset ids ⊆ vars → YulTerm (CExpr vars n) →
YulTerm (CStatement vars vars b b')
| CIf :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (CExpr vars 1) → YulTerm (CBlock vars b b') →
YulTerm (CStatement vars vars b b')
| CExpressionStatement :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (CExpr vars 0) -> YulTerm (CStatement vars vars b b')
| CSwitch : ∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (CExpr vars 1) →
YulTerm (SwitchBody vars b b') →
YulTerm (CStatement vars vars b b')
| CFor :
∀ {vars : finset Identifier} (inner_vars inner_vars' inner_vars'' : finset Identifier)
{b : IsInFor} {b' : IsInFunc},
YulTerm (BlockList vars (vars ∪ inner_vars) NotNestedInFor b') →
YulTerm (CExpr (vars ∪ inner_vars) 1) →
YulTerm (BlockList (vars ∪ inner_vars) (vars ∪ inner_vars') NestedInFor b') →
YulTerm (BlockList (vars ∪ inner_vars') (vars ∪ inner_vars'') NotNestedInFor b') →
YulTerm (CStatement vars vars b b')
| CBreak :
∀ {vars : finset Identifier} {b' : IsInFunc},
YulTerm (CStatement vars vars NestedInFor b')
| CContinue :
∀ {vars : finset Identifier} {b' : IsInFunc},
YulTerm (CStatement vars vars NestedInFor b')
| CLeave :
∀ {vars : finset Identifier} {b : IsInFor},
YulTerm (CStatement vars vars b InFunc)
| ForExecInit :
∀ {vars : finset Identifier} (curr_inner_vars inner_vars inner_vars' inner_vars'' : finset Identifier)
{b : IsInFor} {b' : IsInFunc},
VarStore curr_inner_vars →
YulTerm (CExpr (vars ∪ inner_vars) 1) →
YulTerm (BlockList (vars ∪ inner_vars) (vars ∪ inner_vars') NestedInFor b') →
YulTerm (BlockList (vars ∪ inner_vars') (vars ∪ inner_vars'') NotNestedInFor b') →
YulTerm (BlockList (vars ∪ curr_inner_vars) (vars ∪ inner_vars) NotNestedInFor b') →
YulTerm (CStatement vars vars b b')
| ForCheckCond :
∀ {vars : finset Identifier} (inner_vars inner_vars' inner_vars'' : finset Identifier)
{b : IsInFor} {b' : IsInFunc},
VarStore inner_vars →
YulTerm (CExpr (vars ∪ inner_vars) 1) →
YulTerm (BlockList (vars ∪ inner_vars) (vars ∪ inner_vars') NestedInFor b') →
YulTerm (BlockList (vars ∪ inner_vars') (vars ∪ inner_vars'') NotNestedInFor b') →
YulTerm (CExpr (vars ∪ inner_vars) 1) →
YulTerm (CStatement vars vars b b')
| ForExecBody :
∀ {vars : finset Identifier} (curr_inner_vars inner_vars inner_vars' inner_vars'' : finset Identifier)
{b : IsInFor} {b' : IsInFunc},
VarStore curr_inner_vars →
vars ∪ inner_vars ⊆ vars ∪ curr_inner_vars →
YulTerm (CExpr (vars ∪ inner_vars) 1) →
YulTerm (BlockList (vars ∪ inner_vars) (vars ∪ inner_vars') NestedInFor b') →
YulTerm (BlockList (vars ∪ inner_vars') (vars ∪ inner_vars'') NotNestedInFor b') →
YulTerm (BlockList (vars ∪ curr_inner_vars) (vars ∪ inner_vars') NestedInFor b') →
YulTerm (CStatement vars vars b b')
| ForExecPost :
∀ {vars : finset Identifier} (curr_inner_vars inner_vars inner_vars' inner_vars'' : finset Identifier)
{b : IsInFor} {b' : IsInFunc},
VarStore curr_inner_vars →
YulTerm (CExpr (vars ∪ inner_vars) 1) →
YulTerm (BlockList (vars ∪ inner_vars) (vars ∪ inner_vars') NestedInFor b') →
YulTerm (BlockList (vars ∪ inner_vars') (vars ∪ inner_vars'') NotNestedInFor b') →
YulTerm (BlockList (vars ∪ curr_inner_vars) (vars ∪ inner_vars'') NotNestedInFor b') →
YulTerm (CStatement vars vars b b')
| Skip :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm (CStatement vars vars b b')
-- ForCheckCond, ForExecbody and Skip not in Yul specification, added for small step semantics.
open YulTerm
def getVariableUpdate : ∀ {t : TermType} , YulTerm Γ t → option (finset Identifier × finset Identifier)
| (BlockList vars vars' _ _) _ := some (vars, vars')
| (CBlock _ _ _) _ := none
| (SwitchBody _ _ _) _ := none
| (CExpr _ _) _ := none
| (CStatement vars vars' _ _) _ := some (vars, vars')
lemma term_scope_monotonic :
∀ {t : TermType} (term : YulTerm Γ t) (vars vars' : finset Identifier),
getVariableUpdate Γ term = some (vars, vars') → vars ⊆ vars' :=
begin
intros ttype t,
induction t,
-- EmpCBlock
intros vars vars' is_var_update i,
intro i_in_vars,
rw getVariableUpdate at is_var_update,
injection is_var_update with is_var_update,
injection is_var_update with vars_eq_tvars tvars_eq_tvars,
rw [←tvars_eq_tvars, vars_eq_tvars],
exact i_in_vars,
-- SeqCBlock
intros vars vars' is_var_update i,
intro i_in_vars,
rw getVariableUpdate at is_var_update,
injection is_var_update with is_var_update,
injection is_var_update with vars_eq_tvars tvars''_eq_vars',
rw vars_eq_tvars at t_ᾰ,
have int₁ := t_ih_ᾰ vars t_vars' _ i_in_vars,
rw tvars''_eq_vars' at t_ᾰ_1,
have int₂ := t_ih_ᾰ_1 t_vars' vars' _ int₁,
exact int₂,
rw getVariableUpdate,
injection is_var_update with _ tvars''_eq_vars',
rw tvars''_eq_vars',
rw getVariableUpdate,
rw vars_eq_tvars,
-- Block, SwitchBody & Expr
repeat {
intros vars vars',
intro f,
rw getVariableUpdate at f,
exfalso,
exact option.some_ne_none (vars, vars') (eq.symm f),
},
-- CStatements that do not bring new variables into scope.
repeat {
intros vars vars',
intro is_var_update,
rw getVariableUpdate at is_var_update,
injection is_var_update with is_var_update,
injection is_var_update with vars_eq_tvars tvars_eq_vars',
rw [←tvars_eq_vars', vars_eq_tvars],
exact finset.subset.refl vars,
},
-- CVariableDeclaration, CVariableDeclarationAss
repeat {
intros vars vars',
intro is_var_update,
rw getVariableUpdate at is_var_update,
injection is_var_update with is_var_update,
injection is_var_update with vars_eq eq_vars',
rw [←vars_eq,←eq_vars'],
exact finset.subset_union_left _ _,
},
end
def frame_TermType : TermType → finset Identifier → TermType
| (BlockList vars vars' b b') fvars :=
BlockList (vars ∪ fvars) (vars' ∪ fvars) b b'
| (CBlock vars b b') fvars := CBlock (vars ∪ fvars) b b'
| (SwitchBody vars b b') fvars := SwitchBody (vars ∪ fvars) b b'
| (CExpr vars n) fvars := CExpr (vars ∪ fvars) n
| (CStatement vars vars' b b') fvars :=
CStatement (vars ∪ fvars) (vars' ∪ fvars) b b'
lemma frame_lemma :
∀ s₁ s₂ s₃ : finset Identifier,
s₁ ∪ s₂ ∪ s₃ = s₁ ∪ s₃ ∪ s₂ :=
begin
intros s₁ s₂ s₃,
rw (finset.union_assoc s₁ s₂ s₃),
rw (finset.union_assoc s₁ s₃ s₂),
rw (finset.union_comm s₂ s₃),
end
def frame :
∀ {t : TermType} (fvars : finset Identifier),
YulTerm Γ t → YulTerm Γ (frame_TermType t fvars)
| (BlockList _ _ _ _) fvars EmpCBlock := EmpCBlock
| (BlockList _ _ _ _) fvars (SeqCBlock vars' cstmnt cblklst') :=
SeqCBlock (vars' ∪ fvars) (frame fvars cstmnt) (frame fvars cblklst')
| (CBlock vars b b') fvars (NestedScope inner_vars inner_vars' σ blklst) :=
let inner_vars_eq:= finset.union_assoc inner_vars vars fvars,
inner_vars'_eq := finset.union_assoc inner_vars' vars fvars,
cast (cblklst : YulTerm Γ (BlockList((inner_vars ∪ vars) ∪ fvars) ((inner_vars' ∪ vars) ∪ fvars) b b')) :
YulTerm Γ (BlockList (inner_vars ∪ (vars ∪ fvars)) (inner_vars' ∪ (vars ∪ fvars)) b b') :=
eq.rec (eq.rec cblklst inner_vars_eq) inner_vars'_eq
in NestedScope inner_vars inner_vars' σ (cast $ frame fvars blklst)
| (SwitchBody _ _ _) fvars (CCase lit blk swtchbody) :=
CCase lit (frame fvars blk) (frame fvars swtchbody)
| (SwitchBody _ _ _) fvars (CDefault blk) :=
CDefault (frame fvars blk)
| (SwitchBody _ _ _) fvars CNone :=
CNone
| (CExpr vars m) fvars (CFunctionCall f_id n p args) :=
CFunctionCall f_id n p (λi, frame fvars (args i))
| (CExpr vars 1) fvars (CId i i_in_vars) :=
CId i (finset.mem_of_subset (finset.subset_union_left vars fvars) i_in_vars)
| (CExpr _ 1) fvars (CLit lit) := CLit lit
| (CExpr _ _) fvars (Scope vars_inner vars_inner' ret_vars σ stmnt) :=
Scope vars_inner vars_inner' ret_vars σ stmnt
| (CExpr _ _) fvars (Result res_vec) :=
Result res_vec
| (CStatement _ _ _ _) fvars (CBlock blk) :=
CBlock (frame fvars blk)
| (CStatement vars _ b b') fvars (CVariableDeclarationAss n new_vars cexpr) :=
let cast (cstmnt : YulTerm Γ (CStatement (vars ∪ fvars) (vars ∪ fvars ∪ tofinset new_vars) b b'))
: YulTerm Γ (CStatement (vars ∪ fvars) (vars ∪ tofinset new_vars ∪ fvars) b b') :=
eq.rec cstmnt (finset.union_right_comm vars fvars (tofinset new_vars))
in cast $ CVariableDeclarationAss n new_vars (frame fvars cexpr)
| (CStatement vars _ b b') fvars (CVariableDeclaration n new_vars) :=
let cast (cstmnt : YulTerm Γ (CStatement (vars ∪ fvars) (vars ∪ fvars ∪ tofinset new_vars) b b'))
: YulTerm Γ (CStatement (vars ∪ fvars) (vars ∪ tofinset new_vars ∪ fvars) b b') :=
eq.rec cstmnt (finset.union_right_comm vars fvars (tofinset new_vars))
in cast $ CVariableDeclaration n new_vars
| (CStatement vars _ b b') fvars (CAssignment n ids in_scope cexpr) :=
CAssignment n ids
(has_subset.subset.trans in_scope (finset.subset_union_left vars fvars))
(frame fvars cexpr)
| (CStatement vars _ b b') fvars (CIf cexpr blk) :=
CIf (frame fvars cexpr) (frame fvars blk)
| (CStatement vars _ b b') fvars (CExpressionStatement cexpr) :=
CExpressionStatement (frame fvars cexpr)
| (CStatement vars _ b b') fvars (CSwitch cexpr swtchbody) :=
CSwitch (frame fvars cexpr) (frame fvars swtchbody)
| (CStatement vars _ b b') fvars (CFor inner_vars inner_vars' inner_vars'' init cond body post) :=
let init_framed : YulTerm Γ (BlockList (vars ∪ fvars) (vars ∪ fvars ∪ inner_vars) NotNestedInFor b') :=
begin
have init_framed := frame fvars init,
rw frame_TermType at init_framed,
apply eq.rec init_framed,
rw frame_lemma,
end,
cond_framed : YulTerm Γ (CExpr (vars ∪ fvars ∪ inner_vars) 1) :=
begin
have cond_framed := frame fvars cond,
rw frame_TermType at cond_framed,
apply eq.rec cond_framed,
rw frame_lemma,
end,
body_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars) (vars ∪ fvars ∪ inner_vars') NestedInFor b') :=
begin
have body_framed := frame fvars body,
rw frame_TermType at body_framed,
apply eq.rec body_framed,
rw (frame_lemma vars inner_vars fvars),
rw (frame_lemma vars inner_vars' fvars),
end,
post_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars') (vars ∪ fvars ∪ inner_vars'') NotNestedInFor b') :=
begin
have post_framed := frame fvars post,
rw frame_TermType at post_framed,
apply eq.rec post_framed,
rw (frame_lemma vars inner_vars' fvars),
rw (frame_lemma vars inner_vars'' fvars),
end
in CFor inner_vars inner_vars' inner_vars''
init_framed cond_framed body_framed post_framed
| (CStatement vars _ b b') fvars CBreak := CBreak
| (CStatement vars _ b b') fvars CContinue := CContinue
| (CStatement vars _ b b') fvars CLeave := CLeave
| (CStatement vars _ b b') fvars
(ForExecInit curr_inner_vars inner_vars inner_vars' inner_vars'' σ cond loop post eval_init) :=
let cond_framed : YulTerm Γ (CExpr (vars ∪ fvars ∪ inner_vars) 1) :=
begin
have cond_framed := frame fvars cond,
rw frame_TermType at cond_framed,
apply eq.rec cond_framed,
rw frame_lemma,
end,
loop_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars) (vars ∪ fvars ∪ inner_vars') NestedInFor b') :=
begin
have loop_framed := frame fvars loop,
rw frame_TermType at loop_framed,
apply eq.rec loop_framed,
rw (frame_lemma vars inner_vars fvars),
rw (frame_lemma vars inner_vars' fvars),
end,
post_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars') (vars ∪ fvars ∪ inner_vars'') NotNestedInFor b') :=
begin
have post_framed := frame fvars post,
rw frame_TermType at post_framed,
apply eq.rec post_framed,
rw (frame_lemma vars inner_vars' fvars),
rw (frame_lemma vars inner_vars'' fvars),
end,
eval_init_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ curr_inner_vars) (vars ∪ fvars ∪ inner_vars) NotNestedInFor b') :=
begin
have eval_init_framed := frame fvars eval_init,
rw frame_TermType at eval_init_framed,
apply eq.rec eval_init_framed,
rw (frame_lemma vars curr_inner_vars fvars),
rw (frame_lemma vars inner_vars fvars),
end
in ForExecInit curr_inner_vars inner_vars inner_vars' inner_vars'' σ
cond_framed loop_framed post_framed eval_init_framed
| (CStatement vars _ b b') fvars
(ForCheckCond inner_vars inner_vars' inner_vars'' σ cond loop post eval_cond) :=
let cond_framed : YulTerm Γ (CExpr (vars ∪ fvars ∪ inner_vars) 1) :=
begin
have cond_framed := frame fvars cond,
rw frame_TermType at cond_framed,
apply eq.rec cond_framed,
rw frame_lemma,
end,
loop_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars) (vars ∪ fvars ∪ inner_vars') NestedInFor b') :=
begin
have loop_framed := frame fvars loop,
rw frame_TermType at loop_framed,
apply eq.rec loop_framed,
rw (frame_lemma vars inner_vars fvars),
rw (frame_lemma vars inner_vars' fvars),
end,
post_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars') (vars ∪ fvars ∪ inner_vars'') NotNestedInFor b') :=
begin
have post_framed := frame fvars post,
rw frame_TermType at post_framed,
apply eq.rec post_framed,
rw (frame_lemma vars inner_vars' fvars),
rw (frame_lemma vars inner_vars'' fvars),
end,
eval_cond_framed : YulTerm Γ (CExpr (vars ∪ fvars ∪ inner_vars) 1) :=
begin
have eval_cond_framed := frame fvars eval_cond,
rw frame_TermType at eval_cond_framed,
apply eq.rec eval_cond_framed,
rw (frame_lemma vars inner_vars fvars),
end
in ForCheckCond inner_vars inner_vars' inner_vars'' σ
cond_framed loop_framed post_framed eval_cond_framed
| (CStatement vars _ b b') fvars
(ForExecBody curr_inner_vars inner_vars inner_vars' inner_vars'' σ p cond loop post eval_loop) :=
let cond_framed : YulTerm Γ (CExpr (vars ∪ fvars ∪ inner_vars) 1) :=
begin
have cond_framed := frame fvars cond,
rw frame_TermType at cond_framed,
apply eq.rec cond_framed,
rw frame_lemma,
end,
loop_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars) (vars ∪ fvars ∪ inner_vars') NestedInFor b') :=
begin
have loop_framed := frame fvars loop,
rw frame_TermType at loop_framed,
apply eq.rec loop_framed,
rw (frame_lemma vars inner_vars fvars),
rw (frame_lemma vars inner_vars' fvars),
end,
post_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars') (vars ∪ fvars ∪ inner_vars'') NotNestedInFor b') :=
begin
have post_framed := frame fvars post,
rw frame_TermType at post_framed,
apply eq.rec post_framed,
rw (frame_lemma vars inner_vars' fvars),
rw (frame_lemma vars inner_vars'' fvars),
end,
eval_loop_framed :YulTerm Γ (BlockList (vars ∪ fvars ∪ curr_inner_vars) (vars ∪ fvars ∪ inner_vars') NestedInFor b') :=
begin
have eval_loop_framed := frame fvars eval_loop,
rw frame_TermType at eval_loop_framed,
apply eq.rec eval_loop_framed,
rw (frame_lemma vars inner_vars' fvars),
rw (frame_lemma vars curr_inner_vars fvars),
end,
p' : vars ∪ fvars ∪ inner_vars ⊆ vars ∪ fvars ∪ curr_inner_vars :=
begin
intros i i_in,
repeat {
rw finset.mem_union at i_in,
},
repeat {
rw finset.mem_union,
},
cases i_in with x y,
exact or.inl x,
cases finset.mem_union.1 (p (finset.mem_union_right vars y)) with h,
exact or.inl (or.inl h),
exact or.inr h,
end
in ForExecBody curr_inner_vars inner_vars inner_vars' inner_vars'' σ p'
cond_framed loop_framed post_framed eval_loop_framed
| (CStatement vars _ b b') fvars
(ForExecPost curr_inner_vars inner_vars inner_vars' inner_vars'' σ cond loop post eval_post) :=
let cond_framed : YulTerm Γ (CExpr (vars ∪ fvars ∪ inner_vars) 1) :=
begin
have cond_framed := frame fvars cond,
rw frame_TermType at cond_framed,
apply eq.rec cond_framed,
rw frame_lemma,
end,
loop_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars) (vars ∪ fvars ∪ inner_vars') NestedInFor b') :=
begin
have loop_framed := frame fvars loop,
rw frame_TermType at loop_framed,
apply eq.rec loop_framed,
rw (frame_lemma vars inner_vars fvars),
rw (frame_lemma vars inner_vars' fvars),
end,
post_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ inner_vars') (vars ∪ fvars ∪ inner_vars'') NotNestedInFor b') :=
begin
have post_framed := frame fvars post,
rw frame_TermType at post_framed,
apply eq.rec post_framed,
rw (frame_lemma vars inner_vars' fvars),
rw (frame_lemma vars inner_vars'' fvars),
end,
eval_post_framed : YulTerm Γ (BlockList (vars ∪ fvars ∪ curr_inner_vars) (vars ∪ fvars ∪ inner_vars'') NotNestedInFor b') :=
begin
have eval_post_framed := frame fvars eval_post,
rw frame_TermType at eval_post_framed,
apply eq.rec eval_post_framed,
rw (frame_lemma vars inner_vars'' fvars),
rw (frame_lemma vars curr_inner_vars fvars),
end
in ForExecPost curr_inner_vars inner_vars inner_vars' inner_vars'' σ
cond_framed loop_framed post_framed eval_post_framed
| (CStatement vars _ b b') fvars Skip := Skip
def are_args_reduced :
∀ {vars : finset Identifier} {n : ℕ},
vector (YulTerm Γ (CExpr vars 1)) n → Prop
| _ 0 _ := true
| vars (nat.succ n) ⟨ (Result _) :: cexprs, p ⟩ :=
are_args_reduced
(⟨
cexprs,
by {
rw list.length at p,
exact (nat.add_right_cancel p),
}
⟩ : vector (YulTerm Γ (CExpr vars 1)) n)
| _ (nat.succ n) ⟨ _ :: _, _ ⟩ := false
instance (vars : finset Identifier) (n : ℕ)
(cexprs : vector (YulTerm Γ (CExpr vars 1)) n) :
decidable (are_args_reduced Γ cexprs) :=
begin
induction n,
rw are_args_reduced,
apply decidable.is_true,
trivial,
cases cexprs,
cases cexprs_val,
exfalso,
exact list.ne_nil_of_length_eq_succ cexprs_property (eq.refl list.nil),
cases cexprs_val_hd,
repeat {
rw are_args_reduced,
apply decidable.is_false,
trivial,
},
rw are_args_reduced,
exact n_ih ⟨ cexprs_val_tl, _ ⟩,
end
lemma nil_reduced :
∀ {Γ : FTContext} {vars : finset Identifier},
@are_args_reduced Γ vars 0 vector.nil :=
begin
intros Γ vars,
rw are_args_reduced,
trivial,
end
def is_result :
∀ {vars : finset Identifier} {n : ℕ},
YulTerm Γ (CExpr vars n) -> Prop
| _ _ (Result _) := true
| _ _ (CLit _) := false
| _ _ (CId _ _) := false
| _ _ (CFunctionCall _ _ _ _) := false
| _ _ (Scope _ _ _ _ _) := false
instance
(vars : finset Identifier) (n : ℕ)
(cexpr : YulTerm Γ (CExpr vars n)) : decidable (is_result Γ cexpr) :=
begin
cases cexpr,
repeat {
rw is_result,
apply decidable.is_false,
trivial,
},
rw is_result,
apply decidable.is_true,
trivial,
end
def is_skip :
∀ {vars vars': finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm Γ (CStatement vars vars' b b') -> Prop
| _ _ _ _ Skip := true
| _ _ _ _ (CBlock _) := false
| _ _ _ _ (CVariableDeclarationAss _ _ _) := false
| _ _ _ _ (CVariableDeclaration _ _) := false
| _ _ _ _ (CAssignment _ _ _ _) := false
| _ _ _ _ (CIf _ _) := false
| _ _ _ _ (CExpressionStatement _) := false
| _ _ _ _ (CSwitch _ _) := false
| _ _ _ _ (CFor _ _ _ _ _ _ _) := false
| _ _ _ _ CBreak := false
| _ _ _ _ CContinue := false
| _ _ _ _ CLeave := false
| _ _ _ _ (ForExecInit _ _ _ _ _ _ _ _ _) := false
| _ _ _ _ (ForCheckCond _ _ _ _ _ _ _ _) := false
| _ _ _ _ (ForExecBody _ _ _ _ _ _ _ _ _ _) := false
| _ _ _ _ (ForExecPost _ _ _ _ _ _ _ _ _) := false
lemma is_skip_imp_vars_eq_vars' :
∀ {vars vars' : finset Identifier} {b : IsInFor} {b' : IsInFunc}
{cstmnt : YulTerm Γ (CStatement vars vars' b b')},
is_skip Γ cstmnt → vars' = vars :=
begin
intros vars vars' b b' cstmnt cstmnt_is_skip,
cases cstmnt,
repeat {
rw is_skip at cstmnt_is_skip,
},
repeat {
exfalso,
exact cstmnt_is_skip,
},
end
instance is_skip_decidable {vars vars' : finset Identifier} {b : IsInFor} {b' : IsInFunc}
{stmnt : YulTerm Γ (CStatement vars vars' b b')} : decidable (is_skip Γ stmnt) :=
begin
cases stmnt,
repeat{
rw is_skip,
apply decidable.is_false,
trivial,
},
rw is_skip,
apply decidable.is_true,
trivial,
end
def is_empcblock :
∀ {vars vars' : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm Γ (BlockList vars vars' b b') → Prop
| _ _ _ _ EmpCBlock := true
| _ _ _ _ _ := false
instance empcblock_decidable
{vars vars' : finset Identifier} {b : IsInFor} {b' : IsInFunc}
{blklst : YulTerm Γ (BlockList vars vars' b b')} :
decidable (is_empcblock Γ blklst) :=
begin
cases blklst,
rw is_empcblock,
apply decidable.is_true,
trivial,
rw is_empcblock,
apply decidable.is_false,
trivial,
end
lemma is_empcblock_imp_vars_eq_vars' :
∀ {vars vars' : finset Identifier} {b : IsInFor}
{b' : IsInFunc} {cblk : YulTerm Γ (BlockList vars vars' b b')},
is_empcblock Γ cblk → vars = vars' :=
begin
intros vars vars' b b' cblk cblk_is_empcblock,
cases cblk,
refl,
exfalso,
rw is_empcblock at cblk_is_empcblock,
exact cblk_is_empcblock,
end
def is_empblock :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
YulTerm Γ (CBlock vars b b') → Prop
| _ _ _ (NestedScope _ _ _ blklst) := is_empcblock Γ blklst
instance (vars : finset Identifier) (b : IsInFor) (b' : IsInFunc)
(blk : YulTerm Γ (CBlock vars b b')) : decidable (is_empblock Γ blk) :=
begin
cases blk,
rw is_empblock,
exact YulCommands.empcblock_decidable Γ,
end
def to_literal : ∀ {vars : finset Identifier} {n : ℕ}
(cexpr : YulTerm Γ (CExpr vars n)), is_result Γ cexpr → vector Literal n
| _ _ cexpr@(CFunctionCall _ _ _ _) cexpr_is_res :=
let cexpr_n_is_res : ¬ is_result Γ cexpr :=
begin
rw is_result,
intro f,
exact f,
end
in absurd cexpr_is_res cexpr_n_is_res
| _ _ cexpr@(CId _ _) cexpr_is_res :=
let cexpr_n_is_res : ¬ is_result Γ cexpr :=
begin
rw is_result,
intro f,
exact f,
end
in absurd cexpr_is_res cexpr_n_is_res
| _ _ cexpr@(CLit l) cexpr_is_res :=
let cexpr_n_is_res : ¬ is_result Γ cexpr :=
begin
rw is_result,
intro f,
exact f,
end
in absurd cexpr_is_res cexpr_n_is_res
| _ _ cexpr@(Scope _ _ _ _ _) cexpr_is_res :=
let cexpr_n_is_res : ¬ is_result Γ cexpr :=
begin
rw is_result,
intro f,
exact f,
end
in absurd cexpr_is_res cexpr_n_is_res
| _ _ cexpr@(Result res_vec) _ := res_vec
def getCase :
∀ {vars : finset Identifier} {b : IsInFor} {b' : IsInFunc},
Literal -> YulTerm Γ (SwitchBody vars b b') → YulTerm Γ (CBlock vars b b')
| _ _ _ _ CNone := NestedScope ∅ ∅ empStore EmpCBlock
| _ _ _ _ (CDefault blk) := blk
| _ _ _ l (CCase lit blk swtchbody') :=
if l = lit
then blk
else getCase l swtchbody'
lemma reduced_and_n_tail_reduced_imp_n_lit
{vars : finset Identifier}
(cexpr : YulTerm Γ (CExpr vars 1))
{n : ℕ}
(cexprs : vector (YulTerm Γ (CExpr vars 1)) n) :
¬ (are_args_reduced Γ (vector.cons cexpr cexprs)) → are_args_reduced Γ cexprs →
¬ is_result Γ cexpr :=
begin
intros full_not_red tail_red,
cases cexpr,
repeat {
rw is_result,
intro f,
exact f,
},
cases cexprs,
exfalso,
rw vector.cons at full_not_red,
rw are_args_reduced at full_not_red,
exact full_not_red(tail_red),
end
def get_lits :
∀ {vars : finset Identifier} {n : ℕ}
(arg_cexprs : vector (YulTerm Γ (CExpr vars 1)) n),
are_args_reduced Γ arg_cexprs → vector Literal n
| _ 0 _ _ := vector.nil
| vars (nat.succ n) ⟨(Result lit) :: lit_cexprs, len_p⟩ p :=
let lit_cexprs_vec' : vector (YulTerm Γ (CExpr vars 1)) n :=
⟨ lit_cexprs,
by {
rw list.length at len_p,
exact (nat.add_right_cancel len_p),
}
⟩
in vector.cons lit.head $
get_lits lit_cexprs_vec' $
by {
rw are_args_reduced at p,
exact p,
}
end YulCommands