-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_attacks_and_defenses.py
778 lines (692 loc) · 29.8 KB
/
run_attacks_and_defenses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
"""Tool which runs all attacks against all defenses and computes results."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import json
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import hashlib
from checksumdir import dirhash
import errno
import time
def parse_args():
"""Parses command line arguments."""
parser = argparse.ArgumentParser(
description='Tool to run attacks and defenses.')
parser.add_argument('--attacks_dir', required=True,
help='Location of all attacks.')
parser.add_argument('--targeted_attacks_dir', required=True,
help='Location of all targeted attacks.')
parser.add_argument('--defenses_dir', required=True,
help='Location of all defenses.')
parser.add_argument('--dataset_dir', required=True,
help='Location of the dataset.')
parser.add_argument('--dataset_metadata', required=True,
help='Location of the dataset metadata.')
parser.add_argument('--intermediate_results_dir', required=True,
help='Directory to store intermediate results.')
parser.add_argument('--output_dir', required=True,
help=('Output directory.'))
parser.add_argument('--epsilon', required=False, type=int, default=16,
help='Maximum allowed size of adversarial perturbation')
parser.add_argument('--gpu', dest='use_gpu', action='store_true')
parser.add_argument('--nogpu', dest='use_gpu', action='store_false')
parser.set_defaults(use_gpu=False)
parser.add_argument('--save_all_classification',
dest='save_all_classification', action='store_true')
parser.add_argument('--nosave_all_classification',
dest='save_all_classification', action='store_false')
parser.set_defaults(save_all_classification=False)
return parser.parse_args()
class Submission(object):
"""Base class for all submissions."""
def __init__(self, directory, container, entry_point, use_gpu):
"""Initializes instance of Submission class.
Args:
directory: location of the submission.
container: URL of Docker container which should be used to run submission.
entry_point: entry point script, which invokes submission.
use_gpu: whether to use Docker with GPU or not.
"""
self.name = os.path.basename(directory)
self.directory = directory
self.container = container
self.entry_point = entry_point
self.use_gpu = use_gpu
self.sec_per_100_samples = None
self.output_count = 0
def docker_binary(self):
"""Returns appropriate Docker binary to use."""
return 'nvidia-docker' if self.use_gpu else 'docker'
def __eq__(self, other):
return self.name == other.name
def __ne__(self, other):
return not (self == other)
def __lt__(self, other):
return self.name < other.name
def __le__(self, other):
return self.name <= other.name
def __gt__(self, other):
return self.name > other.name
def __ge__(self, other):
return self.name >= other.name
class Attack(Submission):
"""Class which stores and runs attack."""
def __init__(self, directory, container, entry_point, use_gpu):
"""Initializes instance of Attack class."""
super(Attack, self).__init__(directory, container, entry_point, use_gpu)
def run(self, input_dir, output_dir, epsilon):
"""Runs attack inside Docker.
Args:
input_dir: directory with input (dataset).
output_dir: directory where output (adversarial images) should be written.
epsilon: maximum allowed size of adversarial perturbation,
should be in range [0, 255].
"""
print('Running attack ', self.name)
sys.stdout.flush()
t0 = time.time()
cmd = [self.docker_binary(), 'run',
'-v', '{0}:/input_images'.format(input_dir),
'-v', '{0}:/output_images'.format(output_dir),
'-v', '{0}:/code'.format(self.directory),
'-w', '/code',
self.container,
'./' + self.entry_point,
'/input_images',
'/output_images',
str(epsilon),
'2>&1 | tee -a {0}/stdout.log'.format(output_dir)]
print(' '.join(cmd))
subprocess.call(cmd)
t1 = time.time()
duration = t1-t0
n_files = len([name for name in os.listdir(output_dir)
if os.path.isfile(os.path.join(output_dir, name))])
print('Attack {} took {} seconds and outputed {} images'.format(
self.name, duration, n_files))
self.output_count = n_files
if n_files == 0:
self.sec_per_100_samples = None
else:
self.sec_per_100_samples = 100 * duration / n_files
filepath = os.path.join(output_dir, 'time_per_100.txt')
with open(filepath, 'w') as f:
f.write(str(self.sec_per_100_samples))
def maybe_run(self, hash_folder, input_dir, output_dir, epsilon):
# Check whether we already computed images for this *exact* submission
# The file name encodes the submission's name and the target dir
fname = '{}_{}'.format(
self.name,
hashlib.sha1(output_dir).hexdigest(),
)
# We encode the current request with the hash of the submission, and
# the input data (which consists of the input directory and eps)
# We assume that the input directory's contents are static.
expected_hash = '{}_{}_{}'.format(
dirhash(self.directory, 'sha1'),
hashlib.sha1(input_dir).hexdigest(),
epsilon,
)
filepath = os.path.join(hash_folder, 'attacks', fname)
if not os.path.isfile(filepath):
pass
else:
with open(filepath, 'r') as f:
last_hash = f.read()
if last_hash == expected_hash:
print('Using cached output for ' + self.directory)
return
else:
os.remove(filepath)
# We do need to run the code and generate these attacks
self.run(input_dir, output_dir, epsilon)
# Remember that this is what we last output
with open(filepath, 'w') as f:
f.write(expected_hash)
class Defense(Submission):
"""Class which stores and runs defense."""
def __init__(self, directory, container, entry_point, use_gpu):
"""Initializes instance of Defense class."""
super(Defense, self).__init__(directory, container, entry_point, use_gpu)
def run(self, input_dir, output_dir):
"""Runs defense inside Docker.
Args:
input_dir: directory with input (adversarial images).
output_dir: directory to write output (classification result).
"""
print('Running defense ', self.name)
sys.stdout.flush()
t0 = time.time()
cmd = [self.docker_binary(), 'run',
'-v', '{0}:/input_images'.format(input_dir),
'-v', '{0}:/output_data'.format(output_dir),
'-v', '{0}:/code'.format(self.directory),
'-w', '/code',
self.container,
'./' + self.entry_point,
'/input_images',
'/output_data/result.csv',
'2>&1 | tee -a {0}/stdout.log'.format(output_dir)]
print(' '.join(cmd))
subprocess.call(cmd)
t1 = time.time()
duration = t1-t0
n_files = count_lines_in_file(os.path.join(output_dir, 'result.csv'))
print('Defence {} took {} seconds and outputed {} entries'.format(
self.name, duration, n_files))
self.output_count = n_files
if n_files == 0:
self.sec_per_100_samples = None
else:
self.sec_per_100_samples = 100 * duration / n_files
filepath = os.path.join(output_dir, 'time_per_100.txt')
with open(filepath, 'w') as f:
f.write(str(self.sec_per_100_samples))
def maybe_run(self, hash_folder, input_dir, output_dir):
# Check whether we already computed results for this *exact* submission
# The file name encodes the submission's name and the target dir.
fname = '{}_{}'.format(
self.name,
hashlib.sha1(output_dir).hexdigest(),
)
# We encode the current request with the hash of the submission, and
# the input data (the whole recursive folder of input images).
expected_hash = '{}_{}'.format(
dirhash(self.directory, 'sha1'),
dirhash(input_dir, 'sha1'),
)
filepath = os.path.join(hash_folder, 'defenses', fname)
if not os.path.isfile(filepath):
pass
else:
with open(filepath, 'r') as f:
last_hash = f.read()
if last_hash == expected_hash:
print('Using cached output for ' + self.directory)
return
else:
os.remove(filepath)
# We do need to run the code and generate these attacks
self.run(input_dir, output_dir)
# Remember that this is what we last output
with open(filepath, 'w') as f:
f.write(expected_hash)
def count_lines_in_file(fname):
i = 0
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
def read_submissions_from_directory(dirname, use_gpu):
"""Scans directory and read all submissions.
Args:
dirname: directory to scan.
use_gpu: whether submissions should use GPU. This argument is
used to pick proper Docker container for each submission and create
instance of Attack or Defense class.
Returns:
List with submissions (subclasses of Submission class).
"""
result = []
for sub_dir in os.listdir(dirname):
submission_path = os.path.join(dirname, sub_dir)
try:
if not os.path.isdir(submission_path):
continue
if not os.path.exists(os.path.join(submission_path, 'metadata.json')):
continue
with open(os.path.join(submission_path, 'metadata.json')) as f:
metadata = json.load(f)
if use_gpu and ('container_gpu' in metadata):
container = metadata['container_gpu']
else:
container = metadata['container']
entry_point = metadata['entry_point']
submission_type = metadata['type']
if submission_type == 'attack' or submission_type == 'targeted_attack':
submission = Attack(submission_path, container, entry_point, use_gpu)
elif submission_type == 'defense':
submission = Defense(submission_path, container, entry_point, use_gpu)
else:
raise ValueError('Invalid type of submission: %s', submission_type)
result.append(submission)
except (IOError, KeyError, ValueError):
print('Failed to read submission from directory ', submission_path)
return result
class AttacksOutput(object):
"""Helper class to store data about images generated by attacks."""
def __init__(self,
dataset_dir,
attacks_output_dir,
targeted_attacks_output_dir,
all_adv_examples_dir,
epsilon):
"""Initializes instance of AttacksOutput class.
Args:
dataset_dir: location of the dataset.
attacks_output_dir: where to write results of attacks.
targeted_attacks_output_dir: where to write results of targeted attacks.
all_adv_examples_dir: directory to copy all adversarial examples from
all attacks.
epsilon: maximum allowed size of adversarial perturbation.
"""
self.attacks_output_dir = attacks_output_dir
self.targeted_attacks_output_dir = targeted_attacks_output_dir
self.all_adv_examples_dir = all_adv_examples_dir
self._load_dataset_clipping(dataset_dir, epsilon)
self._output_image_idx = 0
self._output_to_attack_mapping = {}
self._attack_image_count = 0
self._targeted_attack_image_count = 0
self._attack_names = set()
self._targeted_attack_names = set()
self.sec_per_100_samples_attack = {}
self.sec_per_100_samples_targeted_attack = {}
def _load_dataset_clipping(self, dataset_dir, epsilon):
"""Helper method which loads dataset and determines clipping range.
Args:
dataset_dir: location of the dataset.
epsilon: maximum allowed size of adversarial perturbation.
"""
self.dataset_max_clip = {}
self.dataset_min_clip = {}
self._dataset_image_count = 0
for fname in os.listdir(dataset_dir):
if not fname.endswith('.png'):
continue
image_id = fname[:-4]
image = np.array(
Image.open(os.path.join(dataset_dir, fname)).convert('RGB'))
image = image.astype('int32')
self._dataset_image_count += 1
self.dataset_max_clip[image_id] = np.clip(image + epsilon,
0,
255).astype('uint8')
self.dataset_min_clip[image_id] = np.clip(image - epsilon,
0,
255).astype('uint8')
def clip_and_copy_attack_outputs(self, attack_name, is_targeted):
"""Clips results of attack and copy it to directory with all images.
Args:
attack_name: name of the attack.
is_targeted: if True then attack is targeted, otherwise non-targeted.
"""
if is_targeted:
self._targeted_attack_names.add(attack_name)
else:
self._attack_names.add(attack_name)
attack_dir = os.path.join(self.targeted_attacks_output_dir
if is_targeted
else self.attacks_output_dir,
attack_name)
dur = load_duration(os.path.join(attack_dir, 'time_per_100.txt'))
if is_targeted:
self.sec_per_100_samples_targeted_attack[attack_name] = dur
else:
self.sec_per_100_samples_attack[attack_name] = dur
for fname in os.listdir(attack_dir):
if not (fname.endswith('.png') or fname.endswith('.jpg')):
continue
image_id = fname[:-4]
if image_id not in self.dataset_max_clip:
continue
image_max_clip = self.dataset_max_clip[image_id]
image_min_clip = self.dataset_min_clip[image_id]
adversarial_image = np.array(
Image.open(os.path.join(attack_dir, fname)).convert('RGB'))
clipped_adv_image = np.clip(adversarial_image,
image_min_clip,
image_max_clip)
output_basename = '{0:08d}'.format(self._output_image_idx)
self._output_image_idx += 1
self._output_to_attack_mapping[output_basename] = (attack_name,
is_targeted,
image_id)
if is_targeted:
self._targeted_attack_image_count += 1
else:
self._attack_image_count += 1
Image.fromarray(clipped_adv_image).save(
os.path.join(self.all_adv_examples_dir, output_basename + '.png'))
@property
def attack_names(self):
"""Returns list of all non-targeted attacks."""
return self._attack_names
@property
def targeted_attack_names(self):
"""Returns list of all targeted attacks."""
return self._targeted_attack_names
@property
def attack_image_count(self):
"""Returns number of all images generated by non-targeted attacks."""
return self._attack_image_count
@property
def dataset_image_count(self):
"""Returns number of all images in the dataset."""
return self._dataset_image_count
@property
def targeted_attack_image_count(self):
"""Returns number of all images generated by targeted attacks."""
return self._targeted_attack_image_count
def image_by_base_filename(self, filename):
"""Returns information about image based on it's filename."""
return self._output_to_attack_mapping[filename]
class DatasetMetadata(object):
"""Helper class which loads and stores dataset metadata."""
def __init__(self, filename):
"""Initializes instance of DatasetMetadata."""
self._true_labels = {}
self._target_classes = {}
with open(filename) as f:
reader = csv.reader(f)
header_row = next(reader)
try:
row_idx_image_id = header_row.index('ImageId')
row_idx_true_label = header_row.index('TrueLabel')
row_idx_target_class = header_row.index('TargetClass')
except ValueError:
raise IOError('Invalid format of dataset metadata.')
for row in reader:
if len(row) < len(header_row):
# skip partial or empty lines
continue
try:
image_id = row[row_idx_image_id]
self._true_labels[image_id] = int(row[row_idx_true_label])
self._target_classes[image_id] = int(row[row_idx_target_class])
except (IndexError, ValueError):
raise IOError('Invalid format of dataset metadata')
def get_true_label(self, image_id):
"""Returns true label for image with given ID."""
return self._true_labels[image_id]
def get_target_class(self, image_id):
"""Returns target class for image with given ID."""
return self._target_classes[image_id]
def save_target_classes(self, filename):
"""Saves target classed for all dataset images into given file."""
with open(filename, 'w') as f:
for k, v in self._target_classes.items():
f.write('{0}.png,{1}\n'.format(k, v))
def load_defense_output(filename):
"""Loads output of defense from given file."""
result = {}
with open(filename) as f:
for row in csv.reader(f):
try:
image_filename = row[0]
if image_filename.endswith('.png') or image_filename.endswith('.jpg'):
image_filename = image_filename[:image_filename.rfind('.')]
label = int(row[1])
except (IndexError, ValueError):
continue
result[image_filename] = label
return result
def load_duration(filename):
try:
with open(filename) as f:
return float(f.read())
except ValueError:
return None
def compute_and_save_scores_and_ranking(attacks_output,
defenses_output,
dataset_meta,
output_dir,
save_all_classification=False,
defenses_duration=None):
"""Computes scores and ranking and saves it.
Args:
attacks_output: output of attacks, instance of AttacksOutput class.
defenses_output: outputs of defenses. Dictionary of dictionaries, key in
outer dictionary is name of the defense, key of inner dictionary is
name of the image, value of inner dictionary is classification label.
dataset_meta: dataset metadata, instance of DatasetMetadata class.
output_dir: output directory where results will be saved.
save_all_classification: If True then classification results of all
defenses on all images produces by all attacks will be saved into
all_classification.csv file. Useful for debugging.
This function saves following files into output directory:
accuracy_on_attacks.csv: matrix with number of correctly classified images
for each pair of defense and attack.
accuracy_on_targeted_attacks.csv: matrix with number of correctly classified
images for each pair of defense and targeted attack.
hit_target_class.csv: matrix with number of times defense classified image
as specified target class for each pair of defense and targeted attack.
defense_ranking.csv: ranking and scores of all defenses.
attack_ranking.csv: ranking and scores of all attacks.
targeted_attack_ranking.csv: ranking and scores of all targeted attacks.
all_classification.csv: results of classification of all defenses on
all images produced by all attacks. Only saved if save_all_classification
argument is True.
"""
def write_ranking(filename, header, names, scores):
"""Helper method which saves submissions' scores and names."""
order = np.argsort(scores)[::-1]
with open(filename, 'w') as f:
writer = csv.writer(f)
writer.writerow(header)
for idx in order:
writer.writerow([names[idx], scores[idx]])
def write_score_matrix(filename, scores, row_names, column_names):
"""Helper method which saves score matrix."""
result = np.pad(scores, ((1, 0), (1, 0)), 'constant').astype(np.object)
result[0, 0] = ''
result[1:, 0] = row_names
result[0, 1:] = column_names
np.savetxt(filename, result, fmt='%s', delimiter=',')
attack_names = sorted(list(attacks_output.attack_names))
attack_names_idx = {name: index for index, name in enumerate(attack_names)}
targeted_attack_names = sorted(list(attacks_output.targeted_attack_names))
targeted_attack_names_idx = {name: index
for index, name
in enumerate(targeted_attack_names)}
defense_names = sorted(list(defenses_output.keys()))
defense_names_idx = {name: index for index, name in enumerate(defense_names)}
# In the matrices below: rows - attacks, columns - defenses.
accuracy_on_attacks = np.zeros(
(len(attack_names), len(defense_names)), dtype=np.int32)
accuracy_on_targeted_attacks = np.zeros(
(len(targeted_attack_names), len(defense_names)), dtype=np.int32)
hit_target_class = np.zeros(
(len(targeted_attack_names), len(defense_names)), dtype=np.int32)
nb_samples_for_attacks = np.zeros(
(len(attack_names), len(defense_names)), dtype=np.int32)
nb_samples_for_targeted_attacks = np.zeros(
(len(targeted_attack_names), len(defense_names)), dtype=np.int32)
for defense_name, defense_result in defenses_output.items():
for image_filename, predicted_label in defense_result.items():
attack_name, is_targeted, image_id = (
attacks_output.image_by_base_filename(image_filename))
true_label = dataset_meta.get_true_label(image_id)
defense_idx = defense_names_idx[defense_name]
if is_targeted:
attack_idx = targeted_attack_names_idx[attack_name]
nb_samples_for_targeted_attacks[attack_idx, defense_idx] += 1
target_class = dataset_meta.get_target_class(image_id)
if true_label == predicted_label:
accuracy_on_targeted_attacks[attack_idx, defense_idx] += 1
if target_class == predicted_label:
hit_target_class[attack_idx, defense_idx] += 1
else:
attack_idx = attack_names_idx[attack_name]
nb_samples_for_attacks[attack_idx, defense_idx] += 1
if true_label == predicted_label:
accuracy_on_attacks[attack_idx, defense_idx] += 1
# Save matrices.
write_score_matrix(os.path.join(output_dir, 'accuracy_on_attacks.csv'),
accuracy_on_attacks, attack_names, defense_names)
write_score_matrix(
os.path.join(output_dir, 'accuracy_on_targeted_attacks.csv'),
accuracy_on_targeted_attacks, targeted_attack_names, defense_names)
write_score_matrix(os.path.join(output_dir, 'hit_target_class.csv'),
hit_target_class, targeted_attack_names, defense_names)
write_score_matrix(
os.path.join(output_dir, 'rel_accuracy_on_attacks.csv'),
accuracy_on_attacks / nb_samples_for_attacks,
attack_names, defense_names)
write_score_matrix(
os.path.join(output_dir, 'rel_accuracy_on_targeted_attacks.csv'),
accuracy_on_targeted_attacks / nb_samples_for_targeted_attacks,
targeted_attack_names, defense_names)
write_score_matrix(
os.path.join(output_dir, 'rel_hit_target_class.csv'),
hit_target_class / nb_samples_for_targeted_attacks,
targeted_attack_names, defense_names)
write_score_matrix(
os.path.join(output_dir, 'nb_samples_for_attacks.csv'),
nb_samples_for_attacks, attack_names, defense_names)
write_score_matrix(
os.path.join(output_dir, 'nb_samples_for_targeted_attacks.csv'),
nb_samples_for_targeted_attacks, targeted_attack_names, defense_names)
# Compute and save scores and ranking of attacks and defenses,
# higher scores are better.
defense_scores = (np.sum(accuracy_on_attacks, axis=0)
+ np.sum(accuracy_on_targeted_attacks, axis=0))
attack_scores = (np.sum(nb_samples_for_attacks, axis=1)
- np.sum(accuracy_on_attacks, axis=1))
targeted_attack_scores = np.sum(hit_target_class, axis=1)
write_ranking(os.path.join(output_dir, 'defense_ranking.csv'),
['DefenseName', 'Score'], defense_names, defense_scores)
write_ranking(os.path.join(output_dir, 'attack_ranking.csv'),
['AttackName', 'Score'], attack_names, attack_scores)
write_ranking(
os.path.join(output_dir, 'targeted_attack_ranking.csv'),
['AttackName', 'Score'], targeted_attack_names, targeted_attack_scores)
attacks_duration = []
for name in attack_names:
attacks_duration.append(
attacks_output.sec_per_100_samples_attack[name])
targeted_attacks_duration = []
for name in targeted_attack_names:
targeted_attacks_duration.append(
attacks_output.sec_per_100_samples_targeted_attack[name])
defenses_duration_by_idx = []
for name in defense_names:
defenses_duration_by_idx.append(defenses_duration[name])
write_ranking(
os.path.join(output_dir, 'duration_attack.csv'),
['AttackName', 'DurationPer100Samples'], attack_names,
attacks_duration)
write_ranking(
os.path.join(output_dir, 'duration_targeted_attack.csv'),
['AttackName', 'DurationPer100Samples'], targeted_attack_names,
targeted_attacks_duration)
if defenses_duration:
write_ranking(
os.path.join(output_dir, 'duration_defense.csv'),
['DefenseName', 'DurationPer100Samples'], defense_names,
defenses_duration_by_idx)
if save_all_classification:
with open(os.path.join(output_dir, 'all_classification.csv'), 'w') as f:
writer = csv.writer(f)
writer.writerow(['AttackName', 'IsTargeted', 'DefenseName', 'ImageId',
'PredictedLabel', 'TrueLabel', 'TargetClass'])
for defense_name, defense_result in defenses_output.items():
for image_filename, predicted_label in defense_result.items():
attack_name, is_targeted, image_id = (
attacks_output.image_by_base_filename(image_filename))
true_label = dataset_meta.get_true_label(image_id)
target_class = dataset_meta.get_target_class(image_id)
writer.writerow([attack_name, is_targeted, defense_name, image_id,
predicted_label, true_label, target_class])
def main():
args = parse_args()
hash_dir = os.path.join(args.intermediate_results_dir, 'hashes')
attacks_output_dir = os.path.join(args.intermediate_results_dir,
'attacks_output')
targeted_attacks_output_dir = os.path.join(args.intermediate_results_dir,
'targeted_attacks_output')
defenses_output_dir = os.path.join(args.intermediate_results_dir,
'defenses_output')
all_adv_examples_dir = os.path.join(args.intermediate_results_dir,
'all_adv_examples')
# Load dataset metadata.
dataset_meta = DatasetMetadata(args.dataset_metadata)
# Load attacks and defenses.
attacks = [
a for a in read_submissions_from_directory(args.attacks_dir,
args.use_gpu)
if isinstance(a, Attack)
]
targeted_attacks = [
a for a in read_submissions_from_directory(args.targeted_attacks_dir,
args.use_gpu)
if isinstance(a, Attack)
]
defenses = [
d for d in read_submissions_from_directory(args.defenses_dir,
args.use_gpu)
if isinstance(d, Defense)
]
attacks = sorted(attacks)
targeted_attacks = sorted(targeted_attacks)
defenses = sorted(defenses)
print('Found attacks: ', [a.name for a in attacks])
print('Found tageted attacks: ', [a.name for a in targeted_attacks])
print('Found defenses: ', [d.name for d in defenses])
def maybe_make_dir(dirname):
try:
os.mkdir(dirname)
except OSError as exc:
if exc.errno == errno.EEXIST and os.path.isdir(dirname):
pass
else:
raise
# Prepare subdirectories for intermediate results.
maybe_make_dir(hash_dir)
maybe_make_dir(os.path.join(hash_dir, 'attacks'))
maybe_make_dir(os.path.join(hash_dir, 'defenses'))
maybe_make_dir(attacks_output_dir)
maybe_make_dir(targeted_attacks_output_dir)
maybe_make_dir(defenses_output_dir)
maybe_make_dir(all_adv_examples_dir)
for a in attacks:
maybe_make_dir(os.path.join(attacks_output_dir, a.name))
for a in targeted_attacks:
maybe_make_dir(os.path.join(targeted_attacks_output_dir, a.name))
for d in defenses:
maybe_make_dir(os.path.join(defenses_output_dir, d.name))
# Run all non-targeted attacks.
attacks_output = AttacksOutput(args.dataset_dir,
attacks_output_dir,
targeted_attacks_output_dir,
all_adv_examples_dir,
args.epsilon)
for a in attacks:
a.maybe_run(hash_dir,
args.dataset_dir,
os.path.join(attacks_output_dir, a.name),
args.epsilon)
attacks_output.clip_and_copy_attack_outputs(a.name, False)
# Run all targeted attacks.
dataset_meta.save_target_classes(os.path.join(args.dataset_dir,
'target_class.csv'))
for a in targeted_attacks:
a.maybe_run(hash_dir,
args.dataset_dir,
os.path.join(targeted_attacks_output_dir, a.name),
args.epsilon)
attacks_output.clip_and_copy_attack_outputs(a.name, True)
# Run all defenses.
defenses_output = {}
defenses_duration = {}
for d in defenses:
d.maybe_run(hash_dir,
all_adv_examples_dir,
os.path.join(defenses_output_dir, d.name))
defenses_output[d.name] = load_defense_output(
os.path.join(defenses_output_dir, d.name, 'result.csv'))
defenses_duration[d.name] = load_duration(
os.path.join(defenses_output_dir, d.name, 'time_per_100.txt'))
# Compute and save scoring.
compute_and_save_scores_and_ranking(attacks_output, defenses_output,
dataset_meta, args.output_dir,
args.save_all_classification,
defenses_duration=defenses_duration)
if __name__ == '__main__':
main()