Skip to content

Commit

Permalink
Merge pull request #314 from agray3/ag_ggml_graph_caching
Browse files Browse the repository at this point in the history
ggml: avoid rebuild of GGML graph for each token (ggerganov#7456)
  • Loading branch information
Nexesenex authored Oct 12, 2024
2 parents 7eee341 + 23214c9 commit 7ba7aa0
Show file tree
Hide file tree
Showing 4 changed files with 158 additions and 8 deletions.
6 changes: 6 additions & 0 deletions ggml/include/ggml-backend.h
Original file line number Diff line number Diff line change
Expand Up @@ -321,6 +321,12 @@ extern "C" {
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif

// Utility to query whether cached GGML graph is in use
GGML_API bool ggml_use_cached_graph(ggml_backend_sched_t sched);

// Set whether or not to use GGML graph caching
GGML_API void ggml_set_cached_graph(ggml_backend_sched_t sched, bool set_value);

#ifdef __cplusplus
}
#endif
7 changes: 7 additions & 0 deletions ggml/include/ggml.h
Original file line number Diff line number Diff line change
Expand Up @@ -574,6 +574,13 @@ extern "C" {
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
};

// Flag (used on GGML_OP_CPY nodes) on whether node is associated with K or V cache
enum ggml_kv_cache_flag {
GGML_KV_CACHE_FLAG_NONE = 0,
GGML_KV_CACHE_FLAG_K = 1,
GGML_KV_CACHE_FLAG_V = 2
};

// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
Expand Down
33 changes: 32 additions & 1 deletion ggml/src/ggml-backend.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1382,6 +1382,13 @@ struct ggml_backend_sched_split {
struct ggml_cgraph graph;
};

// Object to facilitate GML graph caching
struct ggml_cached_graph {
bool is_active;
ggml_backend_t input_backend;
struct ggml_tensor * input_cpy[GGML_SCHED_MAX_SPLIT_INPUTS];
};

struct ggml_backend_sched {
bool is_reset; // true if the scheduler has been reset since the last graph split
bool is_alloc;
Expand Down Expand Up @@ -1427,6 +1434,8 @@ struct ggml_backend_sched {
size_t context_buffer_size;

bool debug;

struct ggml_cached_graph cached_graph;
};

#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
Expand Down Expand Up @@ -2113,6 +2122,14 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);

if (!sched->cached_graph.is_active) {
sched->cached_graph.input_backend = input_backend;
sched->cached_graph.input_cpy[j] = input_cpy;
}
else {
input_backend = sched->cached_graph.input_backend;
input_cpy = sched->cached_graph.input_cpy[j];
}
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
Expand Down Expand Up @@ -2245,6 +2262,8 @@ ggml_backend_sched_t ggml_backend_sched_new(

ggml_backend_sched_reset(sched);

sched->cached_graph.is_active = false;

return sched;
}

Expand Down Expand Up @@ -2321,6 +2340,9 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st
}

enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {

if(!sched->cached_graph.is_active)
{
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
Expand All @@ -2330,7 +2352,7 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch
return GGML_STATUS_ALLOC_FAILED;
}
}

}
return ggml_backend_sched_compute_splits(sched);
}

Expand Down Expand Up @@ -2595,3 +2617,12 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t

return true;
}

bool ggml_use_cached_graph(ggml_backend_sched_t sched) {
return sched->cached_graph.is_active;
}

void ggml_set_cached_graph(ggml_backend_sched_t sched, bool set_value) {
sched->cached_graph.is_active = set_value;
}

120 changes: 113 additions & 7 deletions src/llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "../ggml/src/ggml-impl.h"

#if defined(GGML_USE_VULKAN)
# include "ggml-vulkan.h"
Expand Down Expand Up @@ -3254,6 +3255,17 @@ struct llama_sbatch {
}
};

// Object used to allow caching of GGML graph between tokens where possible.
struct ggml_cached_graph {
bool is_active = false;
ggml_cgraph * gf;
size_t n;
ggml_backend_t backend_res;
ggml_backend_t backend_embd;
struct ggml_tensor * res;
struct ggml_tensor * embd;
};

struct llama_context {
llama_context(const llama_model & model)
: model(model)
Expand Down Expand Up @@ -3352,6 +3364,8 @@ struct llama_context {
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]

struct ggml_cached_graph cached_graph;
};

struct llama_lora_weight {
Expand Down Expand Up @@ -9146,7 +9160,6 @@ static void llm_build_kv_store(
v_cur = ggml_transpose(ctx, v_cur);
}
cb(v_cache_view, "v_cache_view", il);

ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
}

Expand Down Expand Up @@ -17181,11 +17194,44 @@ static int llama_decode_internal(
ggml_backend_sched_reset(lctx.sched);
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);

ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
ggml_cgraph * gf;
// the output is always the last tensor in the graph
struct ggml_tensor * res;
struct ggml_tensor * embd;

bool n_has_changed_since_last_token = false;
if(lctx.cached_graph.n != kv_self.n) n_has_changed_since_last_token = true;
lctx.cached_graph.n = kv_self.n;

// Re-build graph only if graph caching is not possible
if(!ggml_use_cached_graph(lctx.sched) || n_has_changed_since_last_token) {

gf = llama_build_graph(lctx, ubatch, false);

// Set whether GGML graph caching is in use within GGML module, based on
// whether caching was activated here during the previous token
ggml_set_cached_graph(lctx.sched,lctx.cached_graph.is_active);

// Disable future graph caching in presence of env var,
// if there are multiple devices, if batch size is greater than 1,
// or if nsplits is not 2.
// TO DO enable graph caching for these cases
bool disable_cached_ggml_graph = (getenv("GGML_DISABLE_GRAPH_CACHING") != nullptr)
|| (llama_get_device_count(model) > 1)
|| (ggml_backend_sched_get_n_splits(lctx.sched) != 2);
for (int i = 0 ; i < ggml_graph_n_nodes(gf); i++) {
if (gf->nodes[i]->op == GGML_OP_ADD && gf->nodes[i]->src[1] && gf->nodes[i]->src[1]->ne[1] > 1) {
disable_cached_ggml_graph = true;
break;
}
}

// Set whether graph caching should be used for future tokens
lctx.cached_graph.is_active=!disable_cached_ggml_graph;

// the output is always the last tensor in the graph
struct ggml_tensor * res = ggml_graph_node(gf, -1);
struct ggml_tensor * embd = ggml_graph_node(gf, -2);
res = ggml_graph_node(gf, -1);
embd = ggml_graph_node(gf, -2);

if (lctx.n_outputs == 0) {
// no output
Expand All @@ -17205,10 +17251,60 @@ static int llama_decode_internal(
embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
}
lctx.cached_graph.res = res;
lctx.cached_graph.embd = embd;
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);

ggml_backend_sched_alloc_graph(lctx.sched, gf);

}
else {
gf = lctx.cached_graph.gf;
res = lctx.cached_graph.res;
embd = lctx.cached_graph.embd;
}
lctx.cached_graph.gf = gf;

// Update K and V cache parameters in cached graph.
if(gf != nullptr && gf->nodes != nullptr && ggml_use_cached_graph(lctx.sched)) {

const struct llama_hparams & hparams = model.hparams;
const int64_t kv_head = kv_self.head;

for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
ggml_tensor * node = gf->nodes[i];
if (node->op == GGML_OP_CPY) {

// K cache
const char* k_prefix = "k_cache_view-";
if (strncmp(node->src[1]->name, k_prefix, strlen(k_prefix)) == 0) {
int il = atoi(node->src[1]->name + strlen(k_prefix)); // Layer index from name
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
ggml_tensor * tmp_tensor = kv_self.k_l[il];
size_t tmp_offset = (ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa))*kv_head;
node->src[1]->data = static_cast<char*>(tmp_tensor->data) + tmp_offset;
}

// V cache
const char* v_prefix = "v_cache_view-";
if (strncmp(node->src[1]->name, v_prefix, strlen(v_prefix)) == 0) {
int il = atoi(node->src[1]->name + strlen(v_prefix)); // Layer index from name
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * tmp_tensor = kv_self.v_l[il];
size_t tmp_offset;
if (cparams.flash_attn) {
tmp_offset = (kv_head)*ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
} else {
tmp_offset = (kv_head)*ggml_element_size(kv_self.v_l[il]);
}
node->src[1]->data = static_cast<char*>(tmp_tensor->data) + tmp_offset;
}

}
}

}

llama_set_inputs(lctx, ubatch);

llama_graph_compute(lctx, gf, n_threads, threadpool);
Expand All @@ -17231,11 +17327,15 @@ static int llama_decode_internal(
// extract logits
if (res) {
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
GGML_ASSERT(backend_res != nullptr);
GGML_ASSERT(lctx.logits != nullptr);

float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
const int32_t n_outputs_new = lctx.n_outputs;
if(!ggml_use_cached_graph(lctx.sched))
lctx.cached_graph.backend_res = backend_res;
else
backend_res = lctx.cached_graph.backend_res;

GGML_ASSERT(backend_res != nullptr);
GGML_ASSERT(lctx.logits != nullptr);

if (n_outputs_new) {
GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
Expand All @@ -17247,6 +17347,12 @@ static int llama_decode_internal(
// extract embeddings
if (embd) {
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);


if(!ggml_use_cached_graph(lctx.sched))
lctx.cached_graph.backend_embd = backend_embd;
else
backend_embd = lctx.cached_graph.backend_embd;
GGML_ASSERT(backend_embd != nullptr);

switch (cparams.pooling_type) {
Expand Down

0 comments on commit 7ba7aa0

Please sign in to comment.